我们如何判断两个神经网络是否在特定计算中使用相同的内部过程?这个问题与神经科学和机器学习的多个子领域有关,包括神经人工智能、机械可解释性和脑机接口。比较神经网络的标准方法侧重于潜在状态的空间几何形状。然而,在循环网络中,计算是在动态层面实现的,两个执行相同计算且具有相同动态的网络不必具有相同的几何形状。为了弥合这一差距,我们引入了一种新颖的相似性度量,可在动态层面比较两个系统,称为动态相似性分析 (DSA)。我们的方法包含两个部分:利用数据驱动动态系统理论的最新进展,我们学习一个高维线性系统,该系统可准确捕捉原始非线性动力学的核心特征。接下来,我们使用 Procrustes 分析的新颖扩展来比较通过此嵌入的不同系统,该扩展解释了矢量场在正交变换下如何变化。在四个案例研究中,我们证明了我们的方法可以解开共轭和非共轭循环神经网络 (RNN),而几何方法则存在不足。我们还表明,我们的方法可以以无监督的方式区分学习规则。我们的方法为比较分析神经回路中计算的基本时间结构打开了大门。
聊天机器人的最新进展为学生和学者提供了一种新的知识来源和组成方式。在很短的时间内,学生和学者蜂拥而至,用于使用Chatgpt和其他生成人工智能(GAI)平台,原因是他们的反应能力。此外,除了生成的聊天机器人(例如Chatgpt和Gemini)之外,AI编写工具用于释义,总结和共同写作也已经变得有能力且越来越普遍,因此公众被宠坏了。在对流行的聊天机器人和AI写作工具进行了测试后,很明显,尽管Turnitin之类的程序正在开发新算法来检测窃和AI-AI-ATECTENT内容,但本研究的初步发现表明,这可能是一项越来越困难的任务。这些测试已在YouTube上发表,几周后,随着学生和教育工作者似乎对这些AI工具的优势,劣势和合法性似乎不确定,证据就获得了数以万计的观点。清楚的是,我们已经通过了临界点,而AI的帮助不再只是语法修复器。这对此的影响是关于窃的,因为窃已经是大学的重要问题。该职位论文报告使用Turnitin软件和AI写作工具(例如Chatgpt和Quillbot)进行的测试。这些现实世界的测试支持该论文的立场,即确定在GAI世界中构成原创作品的越来越困难。所提出的方法侧重于工作的“理解”,而不是文本相似性。本文的目的是提供证据表明,依靠相似性检查和当前形式的AI探测器的教育者可能会无意间支持窃而不是减少窃。提出了一种新的学术窃方法检测方法,利用大型语言模型来生成和跟踪思想,从而充当一个想法数据库。
如今,基于状态的维护 (CBM) [1] 是制造业越来越多地尝试采用的一种维护策略,目的是降低设备单元的生命周期成本并延长其可用性。CBM 使用实时信息通过恢复设备单元的功能特性来优化维护时机。它基于设备单元的当前健康监测,因此添加预测工具来预测未来状态和预测维护非常重要。故障预测是 CBM 的主要任务之一。它根据状态监测信息估计设备单元的 RUL。通常,预测方法可以根据所用信息的类型分为三大类。这些类别 [2]、[3] 被定义为基于物理模型的方法、数据驱动的方法和基于融合的方法。基于物理模型的方法 [4] 使用显式数学模型来表示动态系统的退化。数据驱动的方法基于状态监测,
1密苏里大学生物学系 - 美国密苏里州圣路易斯圣路易斯大学| 2密苏里大学惠特尼·R·哈里斯世界生态中心 - 美国密苏里州圣路易斯圣路易斯大学| 3美国密苏里州圣路易斯密苏里州植物园科学与保护部| 4美国加利福尼亚州阿卡塔的Cal Poly Humboldt林业,消防和范围管理部| 5约克大学生物学系,英国约克| 6美国阿拉斯加阿拉斯加费尔班克斯大学北极生物学研究所,美国阿拉斯加,美国| 7 H.J. Andrews实验森林,俄勒冈州立大学,美国俄勒冈州蓝河| 8美国波多黎各圣胡安市波多黎各大学环境科学系| 9美国加利福尼亚州圣塔芭芭拉分校国家生态分析与合成中心长期生态研究网络办公室,美国加利福尼亚州圣塔芭芭拉| 10赖斯大学,美国德克萨斯州休斯敦莱斯大学生物科学系|美国科罗拉多州科罗拉多州柯林斯堡的USDA森林服务局11落基山研究站| 12美国俄亥俄州俄亥俄州俄亥俄州大学环境与植物生物学系| 13美国新罕布什尔州汉诺威市达特茅斯学院的环境研究系| 14美国纽约州伊萨卡康奈尔大学自然资源与环境系| 15美国加利福尼亚州戴维斯分校的进化与生态系| 16美国加利福尼亚州卡梅尔谷加利福尼亚大学伯克利分校的Hastings保留地| 17美国加利福尼亚州伯克利分校的环境科学,政策与管理系| 18美国科罗拉多州柯林斯堡的柯林斯堡科学中心,美国科罗拉多州柯林斯堡1密苏里大学生物学系 - 美国密苏里州圣路易斯圣路易斯大学| 2密苏里大学惠特尼·R·哈里斯世界生态中心 - 美国密苏里州圣路易斯圣路易斯大学| 3美国密苏里州圣路易斯密苏里州植物园科学与保护部| 4美国加利福尼亚州阿卡塔的Cal Poly Humboldt林业,消防和范围管理部| 5约克大学生物学系,英国约克| 6美国阿拉斯加阿拉斯加费尔班克斯大学北极生物学研究所,美国阿拉斯加,美国| 7 H.J.Andrews实验森林,俄勒冈州立大学,美国俄勒冈州蓝河| 8美国波多黎各圣胡安市波多黎各大学环境科学系| 9美国加利福尼亚州圣塔芭芭拉分校国家生态分析与合成中心长期生态研究网络办公室,美国加利福尼亚州圣塔芭芭拉| 10赖斯大学,美国德克萨斯州休斯敦莱斯大学生物科学系|美国科罗拉多州科罗拉多州柯林斯堡的USDA森林服务局11落基山研究站| 12美国俄亥俄州俄亥俄州俄亥俄州大学环境与植物生物学系| 13美国新罕布什尔州汉诺威市达特茅斯学院的环境研究系| 14美国纽约州伊萨卡康奈尔大学自然资源与环境系| 15美国加利福尼亚州戴维斯分校的进化与生态系| 16美国加利福尼亚州卡梅尔谷加利福尼亚大学伯克利分校的Hastings保留地| 17美国加利福尼亚州伯克利分校的环境科学,政策与管理系| 18美国科罗拉多州柯林斯堡的柯林斯堡科学中心,美国科罗拉多州柯林斯堡Andrews实验森林,俄勒冈州立大学,美国俄勒冈州蓝河| 8美国波多黎各圣胡安市波多黎各大学环境科学系| 9美国加利福尼亚州圣塔芭芭拉分校国家生态分析与合成中心长期生态研究网络办公室,美国加利福尼亚州圣塔芭芭拉| 10赖斯大学,美国德克萨斯州休斯敦莱斯大学生物科学系|美国科罗拉多州科罗拉多州柯林斯堡的USDA森林服务局11落基山研究站| 12美国俄亥俄州俄亥俄州俄亥俄州大学环境与植物生物学系| 13美国新罕布什尔州汉诺威市达特茅斯学院的环境研究系| 14美国纽约州伊萨卡康奈尔大学自然资源与环境系| 15美国加利福尼亚州戴维斯分校的进化与生态系| 16美国加利福尼亚州卡梅尔谷加利福尼亚大学伯克利分校的Hastings保留地| 17美国加利福尼亚州伯克利分校的环境科学,政策与管理系| 18美国科罗拉多州柯林斯堡的柯林斯堡科学中心,美国科罗拉多州柯林斯堡
大多数药物在临床试验的早期阶段就失败了,而且一种药物要想在市场上取得成功需要花费大量的时间和成本 [1, 2]。这些因素促使科学家们努力寻找更好、更便宜的方法来寻找合适的药物。解决这些问题最有效、最有趣的解决方案之一是药物重新定位 (也称为药物再利用)。药物重新定位确实可以加快研究速度,因为它省去了药物设计的早期阶段,但它也有缺点。例如,使用药物重新定位来确定用于治疗新疾病的药物剂量是这一观点面临的最重要挑战之一,因为该药物已经被考虑用于治疗另一种疾病,并且剂量特定。然而,这种观点已经找到了自己的地位,我们今天必须考虑它。
深度神经网络作为小鼠视觉皮层模型的表现如何?迄今为止,大多数研究表明,结果远比灵长类动物视觉皮层建模的结果复杂得多。在这里,我们利用表征相似性分析和神经回归对小鼠视觉皮层中的数十个深度神经网络模型进行了大规模基准测试。利用艾伦大脑观测站的 2 光子钙成像数据集,记录了超过 6,000 个可靠的啮齿动物视觉皮层神经元对自然场景的反应,我们复制了以前的发现并解决了以前的差异,最终证明现代神经网络实际上可以比以前更合理地解释小鼠视觉皮层的活动。使用我们的基准作为图集,我们为有关分析水平的总体问题、有关最能预测整体视觉系统的模型属性的问题以及有关生物和人工表征之间映射的问题提供了初步答案。我们的研究结果为未来小鼠视觉皮层的深度神经网络建模提供了参考点,暗示了映射方法、架构和任务的新组合,以更全面地描述对神经科学如此重要的物种的视觉表征的计算主题,但其感知生理学和生态学与我们在灵长类动物中研究的有显著不同。
动机:精确药物利用患者特定的多模式数据来改善预防,诊断,预后和疾病治疗。提前的精确医学需要复杂,异质和潜在高维数据来源(例如多摩学和临床数据)的非平凡整合。在文献中,已经提出了几种方法来管理丢失的数据,但通常仅限于一部分患者的特征子集的恢复。在很大程度上被忽略的问题是当一个或多个患者完全缺少其中一个或多个数据来源时,这是临床实践中相对常见的状况。结果:我们提出了Miss类似网络融合(MISS-SNF),这是一种新型的通用数据集成方法,旨在在患者相似性网络的背景下管理完全缺失的数据。miss-snf通过利用从SNF算法借来的非线性消息通讯策略来整合不完整的单峰患者相似性网络。Miss-SNF能够恢复缺失的患者相似性,并且是“任务不可知论”,从某种意义上说,可以整合无监督和监督预测任务的部分数据。对来自癌症基因组图集(TCGA)的九个癌症数据集的实验分析表明,Miss-SNF达到最先进的方法会导致恢复相似性并识别出在临床上相关变量中富集的患者亚组,并具有差异性生存率。可用性和实现:在R中实现的MISS-SNF代码可在https://github.com/ anacletolab/misssnf上找到。此外,截肢实验表明,MISS-SNF监督了对整体生存和无进展间隔事件的预测,完全缺少数据的结果可与所有数据可用时获得的结果相当。
结构协方差网络 (SCN) 已成功用于结构磁共振成像 (sMRI) 研究。然而,大多数 SCN 都是由单一标记构建的,对区分不同疾病阶段不敏感。本研究的目的是设计一种新型的区域放射组学相似性网络 (R2SN),以便在形态网络分析中提供更全面的信息。通过计算从每个受试者的任意一对区域中提取的放射组学特征之间的 Pearson 相关性来构建 R2SN(AAL 图谱)。我们进一步评估了 R2SN 的小世界特性,并在不同数据集和重测分析中评估了其可重复性。我们还探讨了 R2SN 与一般智力/区域间基因共表达之间的关系。无论使用不同的特征子集,R2SN 都可以在不同数据集中复制。R2SN 在重测分析中表现出很高的可重复性(组内相关系数 > 0.7)。此外,R2SN 具有小词特性 (σ>2) 以及基因表达与一般智力之间的高相关性 (R=0.29,p<0.001)。此外,该结果也在 Brainnetome 图谱中得到重复。R2SN 提供了一种基于 sMRI 了解人类形态协方差的新颖、可靠且生物学上合理的方法。
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要背景:家庭环境和养育行为等社会生态因素会导致药物滥用。虽然生物行为同步被认为是可以调节环境对发展影响的适应力的基础,但大脑相似性在减轻环境背景有害影响方面的作用尚不清楚。我们测试了父母与青少年的神经相似性(父母与青少年功能性大脑连接之间的模式相似性水平,代表每个二元组中的协调水平)是否能调节家庭混乱(一种压力源)直接和通过父母监控间接预测青少年药物滥用的纵向通路。方法:在 70 对父母与青少年二元组样本中,使用多模式连接相似性估计确定了静息态大脑活动的相似性。青少年和父母报告了家庭混乱和父母监控的情况,并在 1 年的随访中评估了青少年药物滥用情况。结果:调节中介模型表明,对于神经相似性低但神经相似性不高的青少年,家庭混乱程度越高,直接或间接地通过父母监督程度越低来预测药物使用率越高。我们的数据还表明,家庭混乱和药物使用之间的总体关联存在不同的敏感性:神经相似性低的青少年在家庭混乱程度高的情况下表现出较高的药物使用率,而在家庭混乱程度低的情况下表现出较低的药物使用率。结论:神经相似性是一种保护因素,因此,父母与青少年之间的神经相似性可能会减轻家庭环境不佳和养育行为对青少年健康风险行为发展产生的不利影响。