项目名称:社区直接空气捕获联盟(CALDAC)领导组织:加利福尼亚大学伯克利分校组织类型:大学以前已提交了该申请:领先组织提交给DOE:努力不受限制:30%的项目经理:•项目经理:Louise Bedsworth博士:Louise Bedsworth博士:法律和环境中心,伯克利法律,伯克利律师事务所:实验室(LBNL);电力研究所(EPRI); aecom;清洁能源系统(CES);弗雷斯诺州立大学;加州大学默塞德;加州州立大学贝克斯菲尔德;项目2030;进度数据; Carbon180; PSE健康能量;世界资源研究所•技术公司:DAC:Mosaic,Capture6,Origen,Airmyne; CO 2转换技术:蓝色星球,碳建筑;和能源存储:朗多•要考虑的许多地点:最多三个生物能源到位于加利福尼亚州圣华金河谷的清洁能源系统拥有的电力转换设施:加利福尼亚州克恩县的Delano Plant;加利福尼亚州弗雷斯诺县的门多达工厂;加利福尼亚州弗雷斯诺县的Madera Plant。•高级/关键人员:肯·亚历克斯(Ken Alex);迈克尔·基帕斯基(Michael Kiparsky);丹尼尔·卡蒙(Daniel Kammen)(加州大学伯克利分校); Jens Birkholzer,Newsha Ajami,Hanna Breuning; Blake Simmons(LBNL); Adam Berger,Rob Trautz(EPRI); Bill Steen(Aecom);丽贝卡·霍利斯(Rebecca Hollis),大卫·亨森(David Henson)(CES);卡尔·朗利(Fresno State); Sarah Kurtz(UC Merced); Liaosha Song(Cal State University Bakersfield);黛安·杜塞特(Diane Doucette)(项目2030); Celina Scott-Buechler(进度数据); Vanessa Suarez(Carbon180);卑诗省塞思Shonkoff,Lee Ann Hill(PSE Healthy Energy); Dan Lashof,Angela Anderson,(世界资源研究所);内森·吉利兰(Nathan Gilliland)(马赛克(Mosaic),贝克·休斯(Baker Hughes)); Lydia le Page(捕获6);达斯汀池(Origen);马克·赛夫卡(Airmyne);劳拉·贝兰·夏(Laura Berland-Shane)(蓝色星球); Sal Brzozowski(碳建筑); Arvind Menon(Rondo)技术主题:TA-1,可行性Shonkoff,Lee Ann Hill(PSE Healthy Energy); Dan Lashof,Angela Anderson,(世界资源研究所);内森·吉利兰(Nathan Gilliland)(马赛克(Mosaic),贝克·休斯(Baker Hughes)); Lydia le Page(捕获6);达斯汀池(Origen);马克·赛夫卡(Airmyne);劳拉·贝兰·夏(Laura Berland-Shane)(蓝色星球); Sal Brzozowski(碳建筑); Arvind Menon(Rondo)技术主题:TA-1,可行性
抽象地热流体将重金属元素带到表面,其中之一是砷(AS)。砷在地壳中自然存在,土壤中存在,然后可以在空气,水和表面环境上进入矿物质。以气体的形式,砷与岩石的温度,挥发性元件的温度有关,仅在高温下释放。在这项研究中,我们将研究砷的特征,砷动员以及如何在几种条件下表面释放砷气体。基于智利,在火山区的参考文献中说,砷气体含量与该区域具有高温并且在表现类型上有多种条件。从印度尼西亚不同地热区域的两次验证中,我们与参考文献相同。基于此,我们假设地热区域上的砷气体含量与岩石的高温相关,在一般中,我们称其为热源。关键字:砷气体,温度。引言地热流体带有重金属元件,例如Ag,Au,Cu,Sb,Ti,其中一种是砷(AS)(AS)(Brown and Simmons,2003)。砷可以在地壳上发现,并且自然地以高温表面浮出水面。基于对拉丁美洲的研究(Simfors等,2020年)和先前对印度尼西亚的研究,尤其是在地热区域(Taufiq,2021),我们可以假设砷气体含量与高温之间的相关性。数据和方法1。在这项研究中,我们想评估和概述先前研究的假设,其中几种有关砷气体的更新引用,以了解砷气体如何动员,特征气体以及与高温相关。地热流体地热液,含有游离硫酸(SIO 2),盐酸(HCL)和Hydroflouric(HF)酸(Gupta和Roy,2007年)。在低温地热流体的情况下,流体发展所涉及的过程通常是溶解原代矿物质和次级矿物质的沉淀,其程度取决于温度和停留时间。对于高温地热流体,预计会有更多的水岩相互作用,从而导致较高的岩石衍生成分。此外,在火山高温系统中,预计将期望沸腾和凝结的影响以及可能与岩浆挥发物混合。从地热流体的不同起源来看,有些流体与其他液体相比拥有更多有关基础地热系统的信息(Armansson等,全部,2022年)。
[1] Gagan Bansal、Tongshuang Wu、Joyce Zhou、Raymond Fok、Besmira Nushi、Ece Kamar、Marco Tulio Ribeiro 和 Daniel Weld。2021 年。整体是否超过部分?人工智能解释对互补团队绩效的影响。在 2021 年 CHI 计算机系统人为因素会议论文集。1-16。[2] Zana Buçinca、Maja Barbara Malaya 和 Krzysztof Z Gajos。2021 年。信任还是思考:认知强制函数可以减少人工智能辅助决策对人工智能的过度依赖。ACM 人机交互论文集 5,CSCW1 (2021),1-21。[3] Adrian Bussone、Simone Stumpf 和 Dympna O'Sullivan。 2015.对临床决策支持系统中信任和依赖的解释的作用。 2015年医疗信息学国际会议。 160–169。 [4] Arjun Chandrasekaran、Viraj Prabhu、Deshraj Yadav、Prithvijit Chattopadhyay 和 Devi Parikh。 2018.解释是否能让 VQA 模型对人类来说更具可预测性?在 EMNLP 中。 [5] Muhammad EH Chowdhury、Tawsifur Rahman、Amith Khandakar、Rashid Mazhar、Muhammad Abdul Kadir、Zaid Bin Mahbub、Khandakar Reajul Islam、Muhammad Salman Khan、Atif Iqbal、Nasser Al Emadi 等。 2020.人工智能可以帮助筛查病毒和COVID-19肺炎吗? IEEE Access 8 (2020),132665–132676。[6] Berkeley J Dietvorst、Joseph P Simmons 和 Cade Massey。2015 年。算法厌恶:人们在看到算法错误后会错误地避开它们。《实验心理学杂志:综合》144,1 (2015),114。[7] Mary T Dzindolet、Scott A Peterson、Regina A Pomranky、Linda G Pierce 和 Hall P Beck。2003 年。信任在自动化依赖中的作用。《国际人机研究杂志》58,6 (2003),697–718。[8] Ana Valeria Gonzalez、Gagan Bansal、Angela Fan、Robin Jia、Yashar Mehdad 和 Srinivasan Iyer。2020 年。人类对开放域问答的口头与视觉解释的评估。 arXiv preprint arXiv:2012.15075 (2020)。[9] Patrick Hemmer、Max Schemmer、Michael Vössing 和 Niklas Kühl。2021 年。混合智能系统中的人机互补性:结构化文献综述。PACIS 2021 论文集 (2021)。[10] Robert R Hoffman、Shane T Mueller、Gary Klein 和 Jordan Litman。2018 年。可解释人工智能的指标:挑战与前景。arXiv preprint arXiv:1812.04608 (2018)。
癌症中的骨健康:医师和盟友医疗保健专业人员Priya Manjoo博士,MBBS FRCPC内分泌学和代谢,温哥华岛健康局,维多利亚州维多利亚州的利益冲突:安姆根 - 安尔根 - 荣誉仪式 - 教育Imposiation介绍。Advisory boards Dr. Negin Shahid, MD MSc FRCPC Radiation Oncology, British Columbia Cancer - Victoria, Vancouver Island Health Authority Conflict of Interest: None Dr. Akshay Jain, MD FRCPC Endocrinology and Metabolism, Fraser Health Authority, Surrey, BC Conflict of Interest: Advisory board, Speaking honorarium and Clinical research participation- Amgen.Kerstin Gustafson博士,医学博士FRCSC妇科,弗雷泽卫生局,萨里,不列颠哥伦比亚省利益冲突:顾问委员会,演讲酬金 - 安尔根。Sue Purkiss博士,MD FRCPC内科,省卫生服务局,卑诗省温哥华,不列颠哥伦比亚省的利益冲突:无需大卫·肯德勒博士,MD FRCPC内分泌学和代谢,温哥华沿海卫生局,温哥华BC利益冲突:咨询公司:Amgen,Sandoz,Sandoz,Sandoz,Sandoz,Sandoz,Sandoz,ZP。Sue Purkiss博士,MD FRCPC内科,省卫生服务局,卑诗省温哥华,不列颠哥伦比亚省的利益冲突:无需大卫·肯德勒博士,MD FRCPC内分泌学和代谢,温哥华沿海卫生局,温哥华BC利益冲突:咨询公司:Amgen,Sandoz,Sandoz,Sandoz,Sandoz,Sandoz,Sandoz,ZP。We acknowledge the following BC Cancer health providers who generously offered their time and expertise as peer reviewers: Dr. Stephen Chia, MD FRCPC Medical Oncology British Columbia Cancer – Vancouver Dr. Hamid Raziee, MD MHSc FRCPC Radiation Oncology British Columbia Cancer – Kelowna Dr. Jack Zheng, MD FRCPC Radiation Oncology British Columbia Cancer - Abbotsford, Fraser Health Authority Krista Noonan博士,医学博士FRCPC医学肿瘤学不列颠哥伦比亚省癌症 - 萨里 - 帕梅拉·加德纳博士,DMD,DABOM口服肿瘤/牙科英属哥伦比亚癌症 - 温哥华 - 温哥华 - Malcolm Brigden博士,Malcolm Brigden博士肿瘤学不列颠哥伦比亚癌症 - 基洛纳(Kelowna)苏珊·巴尔克维尔(Susan Balkwill),医学博士FRCPC辐射肿瘤学不列颠哥伦比亚省癌症 - 萨里(Surrey - 温哥华
总课时:52 课程成果: CO1:应用矩阵理论和向量微积分的概念 CO2:开发求解微分方程的分析方法 CO3:应用有限差分和有限体积方法求解微分方程 CO4:在工程问题中实施分析和计算技术 矩阵的数学运算、线性方程组、一致性、向量空间、线性相关和独立性、基和维数、线性变换、投影、正交矩阵、正定矩阵、特征值和特征向量、矩阵的相似性、对角化、奇异值分解、矢量场、线积分。曲面积分、变量变换、格林定理、斯托克斯定理和散度定理 常微分方程 (ODE)、初值问题及其求解技术、二阶常微分方程的通解、齐次和非齐次情况、边界值问题、Sturm-Liouville 问题和 ODE 系统。偏微分方程 (PDE)、柯西问题、特征法、二阶 PDE 和分类、边界条件类型、热、波和拉普拉斯方程的公式和解。使用 MATLAB/Python 进行 ODE 和 PDE 的数值实现:ODE:初值问题:一阶和高阶方法、边界值问题、射击方法、数据拟合、最小二乘、标量传输方程的一阶和高阶数值方法、热、波和拉普拉斯方程的有限差分方法。与该项目相关的案例研究:地震波的声学模型、非均匀介质中的扩散、两个平板之间的流动发展、焊接问题、固体材料的热传导、扩散的相场解(Allen Cahn 1D 解)、具有 Lennard-Jones 势的两个或多个分子相互作用的解等。参考文献:[1] Lay, DC, Lay, SR 和 McDonald, JJ,2016 年,《线性代数及其应用》。Pearson,美国。[2] Kreyszig, E.,2011 年,《高等工程数学》,Wiley,印度。[3] Simmons, GF,2011 年,《微分方程及其应用和历史记录》,McGraw Hill,美国。[4] Sneddon,印第安纳州,2006 年,《偏微分方程元素》,多佛,美国。 [5] Rao, KS,2010 年,《偏微分方程简介》,Prentice-Hall,印度。[6] Butcher, JC,2003 年,《常微分方程的数值方法》,Wiley,美国。[7] Thomas, JW,2013 年,《数值偏微分方程:有限差分法》,Springer,瑞士。[8] Versteeg, HK 和 Malalasekera, W.,2007 年,《计算流体力学简介:有限体积》
2021 年加州大学圣地亚哥分校夏季研究会议欢迎参加加州大学圣地亚哥分校年度夏季研究会议,这是全国本科生研究的展示会。由于我们采用虚拟形式,我们有来自全国各地和国际机构的本科生演讲。今年的会议有 450 名参与者,他们参加由教师指导的暑期研究项目,就读的学校从地方社区学院到大型州立大学和小型学院。除了加州大学圣地亚哥分校,代表机构还包括加州州立大学富勒顿分校;加州州立大学北岭分校;加州州立大学圣贝纳迪诺分校;加州州立大学圣马科斯分校;加州州立大学长滩分校;圣地亚哥州立大学;旧金山州立大学;斯佩尔曼学院;加州大学伯克利分校;加州大学欧文分校;加州大学洛杉矶分校;加州大学河滨分校;加州大学默塞德分校;加州大学圣克鲁斯分校;圣地亚哥大学;鲍伊州立大学;南加州大学;新墨西哥矿业技术学院;佐治亚理工学院;路易斯安那泽维尔大学;首尔国立医科大学;特拉华大学;韦尔斯利学院;莫尔豪斯学院霍华德大学;北卡罗来纳州立农业技术大学;圣玛丽大学;北卡罗来纳中央大学;汉普顿大学;休斯顿大学;马里兰大学东岸分校;米尼奥大学;法明代尔州立学院;埃默里大学;西方科技与高等研究院。我们希望您能喜欢这次会议和学生的演讲。我们感谢主持人的帮助和支持,也感谢整个夏天为学生提供培训和指导的导师。我们感谢校长 Pradeep Khosla、执行副校长 Elizabeth Simmons、学生事务副校长 Alysson Satterlund 和学生保留与成功助理副校长 Maruth Figueroa 的支持。夏季研究会议由加州大学圣地亚哥分校本科生研究中心策划和协调,该中心是学生事务部下属的学生保留与成功部门。感谢所有 URH 员工。另外还要感谢 Veronica Bejar、Thomas K. Brown 博士、Kirsten Kung 博士、Claire Kim 博士、Tyler Rogers、Marie Sheneman 博士、Sophia Tsai 博士和 Jason Avalos-Morfin 帮助组织了小组讨论。
通讯作者:Marisa Hilliard博士,贝勒医学院和德克萨斯州儿童医院心理学系副教授,美国德克萨斯州休斯敦,美国德克萨斯州,Marisa.hilliard@bcm.edu。
资金将支持建立量子硅生产工厂,该工厂旨在在公司的卢卡斯高地技术中心提供端到端的制造工厂。预计,第一个生产模块每年将生产ZS-SI(以Halo-Silane的形式)生产5公斤至10kg,然后将其转换为基于全球硅的量子计算行业的潜在客户的多个Q-SI产品表格。新项目将与合作伙伴,硅量子计算有限公司(SQC)和UNSW一起进行,并从一个早期的项目中继续进行,该项目表现出有效产生的革兰氏量的ZS-SI,并富含硅28的硅28含量,最高含量为〜99.998%。Michael Goldsworthy, Silex's CEO/Managing Director, said: “We are delighted to receive funding under the Federal Government's Defence Trailblazer Program, which will assist us to transition our Zero-Spin Silicon enrichment technology from the pilot demonstration level to commercial-scale, including the development of product conversion technology to produce two forms of commercial Quantum Silicon products (gas and solid) required by emerging silicon quantum chip fabricators around the 世界。” “这使我们能够利用在最近完成的零旋转硅项目中为我们创新的Silex激光同位素分离技术所取得的结果,并为新兴的硅量子计算行业的重要启用材料建立主权能力和安全供应链。以前,富集硅的主要供应来自俄罗斯,但该消息来源被地缘政治事件所破坏。”SQC首席执行官Michelle Simmons AO教授说:“在CRC-P计划取得成功的合作之后,SQC对通过开拓者量子硅生产项目扩展与Silex的合作伙伴关系感到非常兴奋。开拓者的资金支持Silex的商业规模生产量子硅,这是澳大利亚SQC Atom级量子计算机生产必不可少的富含硅硅材料。在我们传统的供应来源被破坏的时候,创建这种重要材料的主权供应。我们再也没有动力支持该项目了。”国防开拓者执行董事Sanjay Mazumdar博士说:“国防开拓者期待支持Silex Quantum Silicon生产工厂的商业部署。国防开拓者计划的目的是支持澳大利亚技术的商业化,这些技术将对澳大利亚的国防部门产生重大利益。通过量子硅生产项目,将创建针对硅量子计算所必需的关键量子材料的主权端到端供应链。量子计算的出现预计将对国防和国家安全活动产生深远的影响,并且该项目非常适合开拓者的意图。”
EPSRC工业博士学位景观奖(IDLA):使用配方科学和流变学的结构化液体的数值模型的开发和验证:净零可持续产品。Mark Simmons教授和Alessio Alexiadis化学工程学院博士,伯明翰联合利华大学,阳光港口税收税收津贴19,795英镑,每年5,000英镑的工业增长津贴,以及支付的费用。项目描述:联合利华集团是家庭,个人护理和食品的国际制造商,目的是使可持续的生活司空见惯。该公司拥有400多个品牌,这些品牌在190多个国家/地区出售,每年的营业额在2022年为600亿欧元。包含复杂结构液体的产品是该产品组合的关键组成部分,例如洗发水和头发护发剂(鸽子,lux,sunsilk)。要满足英国气候目标,迫切需要采用新颖的科学方法来实现产品和工艺的快速重新重新制定,以减少制造和使用过程中的温室气体(GHG)排放和水。联合利华已承诺从2039年到销售点从其所有产品中实现零净排放。由于越来越多的成分转移到可持续的原料,以及制造此类成分所需的碳足迹所需的碳足迹,因此需要实现这种创新率。最初的焦点将放在含有层状凝胶网络(LGN)的浓缩产品上。这些结构建立了粘度,并有助于对消费者满意的产品的整体感觉和流动。学生将这个博士学位项目通过测试和开发新的数值框架来促进这一目标,该框架可以在计算机实验中进行测试,以测试新的配方及其针对实验的微观结构,以减少时间和浪费的最终目标,从而将新的配方带给市场。Composed of surfactants and long chain fatty alcohols, the structural features of LGNs are built over three orders of magnitude, from self-assembled repeat-unit bilayer structures at the nanometre- scale, to stacking of these into intermediate mesostructures to form higher order sheet-like agglomerates with dimensions in the order of tens to hundreds of micrometres, which twist, fold and interlock with other sheets.该项目旨在通过模拟(在计算机中)和实验室(体外)实验的组合使用无网状数值方法来验证和进一步开发微观结构的初步模型。候选人将熟悉它们,并在配方和模拟中提出低复杂性实验,以创建能够预测复杂液体的流变特性的能力,并着重于层状凝胶网络。学生将从S&T护发能计划中与联合利华队的互动中受益,并将在其博士项目中练习项目管理,并通过常规团队和更广泛的社区更新来介绍他们的工作。
1. Polack FP、Thomas SJ、Kitchin N、Absalon J、Gurtman A、Lockhart S 等人。BNT162b2 mRNA Covid-19 疫苗的安全性和有效性。N Engl J Med 2020;383:2603-15。2. Baden LR、El Sahly HM、Essink B、Kotloff K、Frey S、Novak R 等人。mRNA-1273 SARS-CoV-2 疫苗的有效性和安全性。N Engl J Med 2021;384:403-16。3. SARS-CoV-2 病毒变体在 särskild betydelse 中的统计(瑞典语)。斯德哥尔摩:瑞典公共卫生署; 2021 年 3 月 18 日。4. Hall VJ、Foulkes S、Saei A、Andrews N、Oguti B。BNT162b2 mRNA 疫苗对英格兰医护人员感染和 COVID-19 疫苗覆盖率的有效性,多中心前瞻性队列研究 (SIREN 研究)。SSRN 2021。5. Amit S、Regev-Yochay G、Afek A、Kreiss Y、Leshem E。BNT162b2 疫苗接种者 SARS-CoV-2 感染和 COVID-19 的早期发病率降低。柳叶刀 2021;397:875-7。6. Hunter PR、Brainard J。评估辉瑞 COVID-19 BNT162b2 疫苗单剂接种后的有效性。对以色列“真实世界”疫苗接种结果研究的重新分析。 medRxiv 2021:2021.02.01.21250957。7. Vasileiou E、Simpson CR、Robertson C、Shi T、Kerr S、Agrawal U 等人。苏格兰首剂 COVID-19 疫苗对住院率的影响:540 万人的全国前瞻性队列研究。SSRN 2021。8. Dagan N、Barda N、Kepten E、Miron O、Perchik S、Katz MA 等人。全国大规模疫苗接种环境中的 BNT162b2 mRNA Covid-19 疫苗。 N Engl J Med 2021。9. Hansen CH、Michlmayr D、Gubbels SM、Mølbak K、Ethelberg S。2020 年丹麦 400 万 PCR 检测个体中 SARS-CoV-2 再感染保护评估:一项人群水平观察性研究。Lancet 2021。10. Hall V、Foulkes S、Charlett A、Atti A、Monk E、Simmons R 等人。抗体阳性的医护人员的 SARS-CoV-2 感染率是否低于抗体阴性的医护人员?大型多中心前瞻性队列研究(SIREN 研究),英格兰:2020 年 6 月至 11 月。medRxiv 2021:2021.01.13.21249642。
