致谢 本文件由美国国家可再生能源实验室的 Cabell Hodge、Jesse Bennett、Julian Bentley 和 Leidy Boyce 编写,并得到了国防部的 Tim Tetreault、Richard Kidd、Mike McGhee 以及国防部车队管理和充电站计划行动官员的支持。行动官员包括国防部的 Brendan Casey、Doug Tucker、Deric Sims、Casey Harsh、Tony Haager、Paul Richardson、Dave Cook、Liz Walter、Seema Aziz-Hall、Carl Alexander、Nic Rotteveel、Janie Willner、Jim Gough、John Asadoorian、Greg Spann、Christine Ploschke、Tyrone Copeland、Jerry Winkler、Alan Parks、Brad Gustafson 和 Kim Gibson。美国能源部联邦能源管理计划的 Sonya Smith-Pickel、Ashley Pennington 和 Jay Wrobel,以及美国国家可再生能源实验室 (NREL) 的 Jeff Marqusee、Mark Singer 和 Ranjit Desai 以及 NREL 分包商 Conger Strategies 的 John Conger 也提供了宝贵的反馈意见。编辑工作由 Heidi Blakley 和 Caitlin Dorsey 完成。
了解外用药物在人体皮肤上的输送和扩散对于药物和化妆品研究都至关重要。这些信息在药物开发的早期阶段至关重要,可以识别出以最佳浓度输送到目标皮肤区的最有希望的成分。有不同的皮肤成像方法(侵入性和非侵入性)可用于表征和量化药物在体内和体外人体皮肤内的时空分布。本综述的第一部分详细介绍了侵入性成像方法(放射自显影、MALDI 和 SIMS)。第二部分回顾了可应用于体内的非侵入性成像方法:i)荧光(常规、共焦和多光子)和第二谐波产生显微镜;ii)振动光谱成像方法(红外、共焦拉曼和相干拉曼散射显微镜)。最后,提出了选择成像方法的流程图,以指导人体皮肤体外和体内药物输送研究。© 2020 Elsevier BV 保留所有权利。
虚拟现实和其他形式的沉浸式学习早已在消防培训中使用(和研究):请参阅 Cater,1994;Tate,Sibert & King,1997;以及 Sims,1995,这只是几个早期的例子。现在有许多商业工具可供使用,旨在为消防员提供有效的培训,也可用于通用培训。许多研究评估了沉浸式学习在一般培训和消防服务相关环境中的益处和局限性(包括 DeLorenzis 等人,2023 年和 Bakar,Sirotiak & Sharma,2020 年)。然而,对于哪种类型的沉浸式培训对消防员最有价值、最有效、适应性最强且最实惠,目前还缺乏明确的指导方针和标准。如果对沉浸式学习领域的当前术语和技术以及消防培训领域最紧迫的需求和担忧没有共同的理解,那么就很难就哪些工具(如果有的话)是必要的、兼容的甚至有用的达成共识。本报告旨在提供有关虚拟现实领域的术语、应用和有用考虑因素的背景信息,结合消防服务界已知和(仍然)未知的需求,为未来的决策制定路线图。
虚拟现实和其他形式的沉浸式学习已在消防服务培训中使用(和研究)了很长时间:请参阅 Cater,1994;Tate,Sibert & King,1997;以及 Sims,1995,仅举几个早期例子。现在有许多商业工具可供使用,旨在为消防员和通用培训提供有效的培训。许多研究评估了沉浸式学习在一般培训和消防服务相关环境中的益处和局限性(包括 DeLorenzis 等人,2023 年和 Bakar,Sirotiak & Sharma,2020 年)。然而,对于哪种类型的沉浸式培训对消防员最有价值、最有效、适应性最强和最实惠,缺乏明确的指导方针和标准。如果对沉浸式学习领域的当前术语和技术以及消防培训领域最紧迫的需求和关注点没有共同的理解,那么就很难就哪些工具(如果有的话)是必要的、兼容的甚至有用的达成共识。本报告旨在提供有关虚拟现实领域的术语、应用和有用考虑的背景信息——结合消防服务界已知和(仍然)未知的需求——为未来的决策制定路线图。
在VACUUM(10-3 PA)和Argon(200 pa)大气层中,在200-550°的温度范围内,在200-550°的温度范围内,在200-550°的温度范围内,通过DC磁铁溅射在SI(100)基板上沉积在Si(100)基板上沉积的Na-Nioscale Ni/Cu/C薄膜的结构和相形的过程。使用同步加速器和COP-辐射X射线衍射(XRD)和次级离子质谱法(SIMS)分析了真空和AR大气中相组合的扩散传质以及相位的变化。由于CU和Ni原子的扩散迁移率随温度升高而导致研究间隔的升高,因此形成了具有不同Ni和Cu浓度的两个区域。晶粒边界和Cu和Ni扩散的大量机制以及热处理气氛的影响。如图所示,与氩气中的nealing相比,在真空气氛中退火会导致基于Cu-基固体溶液形成的发作温度升高100°C,而该固体溶液中Ni浓度的降低。因此,在真空退火时,薄膜在温度范围内保持热稳定性,与氩气退火相比。
图像在科学领域已有很长的使用历史,而且使用越来越广泛。代表复杂系统的大量数据只能通过图像可视化来表示。多元图像的来源多种多样。有些是传统意义上的图像(例如卫星数据),而有些则不是(二次离子质谱,SIMS)。几乎所有物理单位都可用于制作图像和多元图像:温度、重力场、阻抗、磁场、电场、质量、波长、超声波长、极化、电子能量等。科学成像领域的一个粗略但实用的细分是卫星成像、医学(临床)成像和显微镜。最简单但有意义的多元图像有两个像素索引(例如图像平面中的宽度和高度)和一个变量索引,组成一个三向数组。从模拟场景或物体到数字图像的一个重要方面是分辨率。多元图像具有空间、强度、光谱和时间(时间)分辨率。典型的旧卫星图像有 512x512 像素,7 个波长带,强度分辨率为 256 级灰度。高空间和强度分辨率是理想的,这使得阵列相当大,计算速度很慢。
Alan 和 Clare Gruner Andrew Stobart 和 Eliza Strauss Ann Byrne Anne McDonald Barry 和 Faye Hamilton Bill Burdett AM 和 Sandra Burdett Bill Tenner Bridget Meldrum 和 Mark Naughton Catherine Quealy Charlotte 和 David Bradley Chris Hartigan 和 Angela Scarfe Christine Thevathasan David O'Brien 和 Victoria Shannon Derek Young AM 和 Caroline Young Diana Gibson AO Doug Hooley Elizabeth Proust AO Edward 和 Ann Miller Ellen Koshland 和 James McCaughey Fiona Mason 和 James Kelly Fr Barry Moran Fr Terry Kean Jan Talacko 和 Jane Poletti Jane Sims 和 Keith Greening Janet Whiting AM Jenny Jobst Joan 和 Brian Healey John 和 Barbara Ralph John 和 Margaret Mottram John Bennetts 和 Ann Ryan Judith Grealish 和家人 Kathleen Canfell Ken 和 Gail Roche Kerry Gardner AM 和 Andrew Myer AM Kerry Gillespie Keryn 和 Stephen Nossal Krystyna Campbell-Pretty AM 和 Campbell-Pretty 家族
图像在科学领域已有很长的使用历史,而且使用越来越广泛。代表复杂系统的大量数据只能通过图像可视化来表示。多元图像的来源多种多样。有些是传统意义上的图像(例如卫星数据),而有些则不是(二次离子质谱,SIMS)。几乎所有物理单位都可用于制作图像和多元图像:温度、重力场、阻抗、磁场、电场、质量、波长、超声波长、极化、电子能量等。科学成像领域的一个粗略但实用的细分是卫星成像、医学(临床)成像和显微镜。最简单、有意义的多元图像有两个像素索引(例如图像平面中的宽度和高度)和一个变量索引,组成一个三向数组。从模拟场景或物体到数字图像的一个重要方面是分辨率。多元图像具有空间、强度、光谱和时间(时间)分辨率。典型的旧卫星图像有 512x512 像素,7 个波长带,强度分辨率为 256 级灰度。高空间和强度分辨率是理想的,这使得阵列相当大,计算速度很慢。
摘要 — 在本文中,我们报告了高迁移率 β -Ga 2 O 3 同质外延薄膜的生长温度,该薄膜的生长温度远低于金属有机气相外延的传统生长温度窗口。在 Fe 掺杂的 (010) 块体衬底上以 600 ◦ C 生长的低温 β -Ga 2 O 3 薄膜表现出卓越的晶体质量,这从测量的非故意掺杂薄膜的室温霍尔迁移率 186 cm 2 /Vs 可以看出。使用 Si 作为掺杂剂实现 N 型掺杂,并研究了 2 × 10 16 - 2 × 10 19 cm −3 范围内的可控掺杂。通过比较二次离子质谱 (SIMS) 中的硅浓度和温度相关霍尔测量中的电子浓度,研究了 Si 的掺入和活化。即使在这种生长温度下,薄膜也表现出高纯度(低 C 和 H 浓度),且补偿受体浓度非常低(2 × 10 15 cm − 3)。此外,在较低温度下生长时,可以观察到突变掺杂分布,正向衰减速度为 ∼ 5nm/dec(与在 810 ◦ C 下生长的薄膜相比,提高了 10 倍)。
论文指导老师和研究生学者资助人 Shannon Starr(罗彻斯特大学)、Justin Abbott(诺思罗普公司)、Li Lei、Nigie Shi、Austin Calder(国家安全局)、Jeremy Clark(赫尔辛基大学)、Spryridon Michalakis(加州理工大学)。Stephen Ng(罗彻斯特大学)、Anna Vershynina(亚琛工业大学)、Amanda Young(加州大学戴维斯分校)和 Matthew Cha(加州大学戴维斯分校)。研究生资助人:Oscar Bolina(Kaplan-China)、Jean-Bernard Bru(巴斯克大学)、Pierluigi Contucci(博洛尼亚大学)、Wolfgang Spitzer(弗恩大学,哈根)、Daniel Ueltschi(华威大学)、Tom Michoel(爱丁堡大学罗斯林研究所)、福田大学(慕尼黑工业大学)、Sven Bachmann(慕尼黑大学)、Jogia Bandyopadhyay(加州大学戴维斯分校)、Michael Bishop(加州大学戴维斯分校)和 Dirk-Andre Deckert(慕尼黑大学)。