背景:人工智能和机器人技术的发展正在迅速发展,而人工智能和护理中的机器人技术仍处于早期阶段。机器人技术可以补充护士的工作,并为更安全和以人为中心的护理做出贡献。人工智能促进了对重要参数以及其他护理活动的监视,这有助于给护士更多的时间进行其他护理任务。人工智能可能会改变医疗保健中使用的同理心,同情和信任的方式。护士应意识到自己的态度和知识,因为它们会影响有关护理和治疗的决策。目的:这项文学研究的目的是研究护士对护理工作中人工智能和机器人技术的看法。方法:文献研究基于具有定量方法的十二篇文章。使用的数据库是PubMed和Cinahl。质量审查是根据SBU的评论模板进行的。根据Popenoe等人进行了分析。数据分析的原则。结果:结果分为四个主题:态度,知识和教育,功能和特征和后果。护士对使用机器人进行了测试后,他们的态度变得更加积极,而具有更多技术知识和高等教育的护士对护理的益处更为积极。研究参与者认为,人工智能和机器人技术既有正面和负面的功能和后果。结论:护士对AI和RT的看法受到教育后的积极影响以及他们何时必须测试这些功能。扩展知识和教育可以帮助确保护士的护理工作遵循技术发展和以人为中心的安全护理
飞秒激光分层表面重构用于下一代神经接口电极和微电极阵列 Shahram Amini * 1,2、Wesley Seche 1、Nicholas May 2、Hongbin Choi 2、Pouya Tavousi 3、Sina Shahbazmohamadi 2 1 Pulse Technologies Inc.,研究与开发,宾夕法尼亚州 Quakertown 18951 2 康涅狄格大学生物医学工程系,康涅狄格州斯托尔斯 06269 3 康涅狄格大学 UConn 科技园,康涅狄格州斯托尔斯 06269 * 通信地址为 SA(电子邮件:samini@pulsetechnologies.com)摘要 长期植入式神经接口设备能够通过神经刺激以及感知和记录往返于神经组织的电信号来诊断、监测和治疗许多心脏、神经、视网膜和听力疾病。为了提高这些设备的特异性、功能性和性能,电极和微电极阵列(大多数新兴设备的基础)必须进一步小型化,并且必须具有出色的电化学性能和与神经组织的电荷交换特性。在本报告中,我们首次表明可以调整飞秒激光分级重构电极的电化学性能,以产生前所未有的性能值,这些性能值大大超过文献中报道的性能值,例如,与未重构电极相比,电荷存储容量和比电容分别提高了两个数量级和 700 倍以上。此外,建立了激光参数、电化学性能和电极表面参数之间的相关性,虽然性能指标随着激光参数呈现出相对一致的增加行为,但表面参数往往遵循不太可预测的趋势,否定了这些表面参数与性能之间的直接关系。为了回答是什么推动了这种性能和可调性,以及广泛采用的增加表面积和电极粗糙化的原因是否是观察到的性能提升的关键因素,使用聚焦离子束对电极进行的横截面分析首次表明,存在可能有助于观察到的电化学性能增强的亚表面特征。本报告首次报道用于神经接口应用的飞秒激光分层重构电极的此类性能增强和可调性。简介人口老龄化和大量心脏 1,2 、神经 3-6 、视网膜 7,8 和听力障碍 9,10 的存在,这些疾病无法仅通过药物治愈,导致需要长期植入设备的患者数量显著增加。表 1 总结了这些设备及其广泛的应用范围。植入式设备通过将外部电信号从神经刺激器或植入式脉冲发生器 (IPG) 传输到植入式电极或微电极阵列,然后穿过神经细胞或组织 11 的膜,对活组织进行人工刺激。神经系统负责传输从大脑到肌肉以引起肌肉运动的电信号,反之亦然,从感觉器官到大脑(例如,感觉、听觉和视觉)。如果神经受伤,大脑与周围神经之间的交流中断,例如脊髓损伤 12-15 ,则有可能
近几十年来,越来越多的研究人员对学生当前和学生在学习过程中的积极作用感兴趣。几项研究,包括bud等(2001),Falchikov(2001)和Gärdebo&Wiggberg(2012),在学生激活与改进的研究技术以及增强的研究结果之间显示出明显的相关性。但是,在先前的研究中,语言主题中缺少示例,这显然证明了这样的研究的重要性。本文讨论了如何在现代语言的指导计划中使用学生激活方法,例如同伴学习和补充教学(SI),这是针对阅读其语言学科第一学期的学生。通过澳大利亚的培养指导会议,在一个或多个导师的指导下,学生在小组中工作,这里检查了哪种激活方法是根据他们在课堂上的动态进行的。除了听诊外,分析和讨论还基于有关导师自己对领导力和角色的思考的文章,这些文章与与活跃男人的后续会议有关。本文的最后讨论涉及,除其他外。导师角色的各个方面及其如何影响课堂状况以及语言主题与男性计划和SI的兼容性。在研究会议期间,事实证明,在某些情况下,学生和导师对彼此的期望有所不同,这可能会引起不当行为并降低研究节奏,尤其是在引入热门单曲的引入阶段。SI原则的核心,假设导师不应主要回答学生的问题,而是鼓励学生自己找到答案。在学生的目标上造成挫败感,目的是将语言正确性和关注结果(对与错)而不是过程而不是过程。当导师和学生设法扮演角色时,合作变得更加活跃,所有学生都被激发了参加。会议然后成为一种积极的经历,使导师的意义赋予了意义,并在他们的学习过程中增强了学生的增强。
全球变暖是当前影响全世界的问题。航空业约占全球排放量的 3%,需要采取措施,通过新技术和替代航空燃料来减少排放,引导该行业实现可持续发展。如今,乘客有机会通过气候补偿来抵消飞行排放。本研究的目的是调查航空和气候补偿行业未来可能如何发展,以及航空业公司如何应用这些知识来影响航空业的可持续发展。借助这些知识,气候补偿替代方案必须能够适应未来的新条件。这项研究的实证数据包括对航空和气候补偿行业的利益相关者以及政治家的采访。行业报告和文献综述与经验数据以及行业动态、网络创新和情景分析等理论相结合,得出了行业未来可能的情景。此外,还得出结论以及对航空公司价格比较网站的管理影响和建议。这项研究的结论是发展现有网络并建立新的网络,以分享航空业内许多不同利益相关者的知识,并利用他们的能力提出立法改革建议,并为航空业未来的可持续解决方案做好准备。网络还应利用其集体力量游说做出决策,推动更可持续的航空业向前发展。这些网络拥有的广泛专业知识可用于向客户提供有关气候补偿好处的知识,并提高他们对航班气候补偿的兴趣。有关气候补偿的营销和信息需要透明,以便客户了解其对气候的影响。生物燃料和电气化航班是未来更有可能实现的可持续解决方案,因为目前生物燃料的价格非常高,而电气化航班还远未准备好取代当今的喷气式飞机。因此,气候补偿是当今减少净排放的最佳选择。
联系人 Mattias Nyman 摘要 全球变暖是当前影响全世界的问题。航空业约占全球排放量的 3%,需要采取措施,通过新技术和替代航空燃料来减少排放,引导该行业实现可持续发展。如今,乘客有机会通过气候补偿来抵消飞行中的排放量。本研究的目的是调查航空和气候补偿行业未来可能如何发展,以及航空业公司如何应用这些知识来影响航空业的可持续发展。借助这些知识,气候补偿替代方案必须能够适应未来的新条件。这项研究的实证数据包括对航空和气候补偿行业的利益相关者以及政治家的采访。行业报告和文献综述与经验数据以及行业动态、网络创新和情景分析等理论相结合,得出了行业未来可能的情景。此外,还得出结论以及对航空公司价格比较网站的管理影响和建议。这项研究的结论是发展现有网络并建立新的网络,以分享航空业内许多不同利益相关者的知识,并利用他们的能力提出立法改革建议,并为航空业未来的可持续解决方案做好准备。网络还应利用其集体力量游说做出决策,推动更可持续的航空业向前发展。这些网络拥有的广泛专业知识可用于向客户提供有关气候补偿好处的知识,并提高他们对航班气候补偿的兴趣。有关气候补偿的营销和信息需要透明,以便客户了解其对气候的影响。生物燃料和电气化航班是未来更有可能实现的可持续解决方案,因为目前生物燃料的价格非常高,而电气化航班还远未准备好取代当今的喷气式飞机。因此,气候补偿是当今减少净排放的最佳选择。
DGME总干事A K M Amirul Morshed教授,DHAKA教授Abu Yusuf Fokir博士,其他总干事(教育),DGME,DGME,DGME,DGMEE,DGMEE HABIB,医学教育主任,DGME,DGME,DHAKA DR。 Mostafa Khaled Ahmad,主任(管理员),DGME,教授博士医学博士Amir Hossain,DGME,DHAKA教授DGME的总监Amir Hossain博士DGME,DGME,DHAKA教授DGME主任和发展主任Kazi Afzalur Rahman博士Mosharraf Hossain Khondoker,LD,ME&HD,DGME教授博士MD。Humayun Kabir Talukder,出版与课程开发总监),DGME,Mohakhali,Dhaka&Dhaka&Coordinator,运营手册开发委员会博士MD。Masduur Rahman,DGME Dr. DGME替代医学总监(AM) Misbah Uuddin Ahmed。董事(纪律),DGME。博士MD。Jarangir Rashid,总监(财务管理),DGME Dr. A.F.M Shahidur Rahman(牙科教育)主任,DGME教授Syeda Shahhina Subhan博士,Dhaka医学教育中心主任Shahryar Nabi博士,迪恩医学院院长,岩石大学教授。博士Rajshahi医学院校长Nowshad Ali,Rajshahi大学医学院院长博士MD。Moynul Hausue,院长,医学院,Sylhet医科大学教授博士Shahena Akter,院长,医学院,室友大学生物化学教师教授教授达卡医学教授教授Mohammad Hafizur Rahman教授Nasiimul Hoque,Mono医学院教授教授Sunanj教授Bangabandhu医学院教授兼校长Manojit Mazumder。 Rajshahi医学院教授Parveen Sultanana教授达卡省武装部队医学院教授Mimi Parvin博士Mokerroma Ferdous博士,Dhaka教授Jashore Medical College。 MD。Akhteruzzaman,单诺医学院教授校长达卡医学教授教授Khadiza Akther Jamba教授Nowrose Jahan Jahan,教授,Salimullah医学院爵士教授Md Kamal Sultan,Shaheed Suhrawards医学院教授Mafruha Nazneen教授,中央国际医学院教授教授。博士MD。 Rashedul Hausue,Rangpur医学院教授,Rangpur博士Fahmida Kabir,Green Life医学院教授Lona博士,妇女和医院医学院副教授Farzana Shirin教授,东医学院教授教授Rashida Begum,孟加拉国医学院教授教授Ruksana Karim,Uttara Anhunik医学院教授Dr. Mymensingh医学院副教授Shamima Akhter,教授Ara Begum,受欢迎的医学院博士MD。 Habibur Rahman,Sirajganj Dr. Shaheed M. M. Monsur Ali医学院副教授国家预防与社会医学研究所副教授Rubena Haqaue博士M. Tazul Islam,Sheikh Hasina医学院Hobiganj博士助理教授易卜拉欣医学院教授苏丹娜·帕文(Sultana Parvene)博士Jainul Hausee Sikder女士医学院副教授Saminina Shafiullah博士MD。 Asiul Kabir,糖尿病协会医学院法里德布尔教授副教授。博士Kalyan Rent,Jaurul Islam医学院教授,Kishoregang Dr. Netrokona医学院副教授(C.C)副教授Muntakim Mahmud Saadi教授Ashraf-Zaman,Ad-Din女子医学院教授Manndra Nath Roy教授,联合医学院教授,教授博士又名Akhteruzzaman,单诺医学院教授校长达卡医学教授教授Khadiza Akther Jamba教授Nowrose Jahan Jahan,教授,Salimullah医学院爵士教授Md Kamal Sultan,Shaheed Suhrawards医学院教授Mafruha Nazneen教授,中央国际医学院教授教授。博士MD。Rashedul Hausue,Rangpur医学院教授,Rangpur博士Fahmida Kabir,Green Life医学院教授Lona博士,妇女和医院医学院副教授Farzana Shirin教授,东医学院教授教授Rashida Begum,孟加拉国医学院教授教授Ruksana Karim,Uttara Anhunik医学院教授Dr. Mymensingh医学院副教授Shamima Akhter,教授Ara Begum,受欢迎的医学院博士MD。Habibur Rahman,Sirajganj Dr. Shaheed M. M. Monsur Ali医学院副教授国家预防与社会医学研究所副教授Rubena Haqaue博士M. Tazul Islam,Sheikh Hasina医学院Hobiganj博士助理教授易卜拉欣医学院教授苏丹娜·帕文(Sultana Parvene)博士Jainul Hausee Sikder女士医学院副教授Saminina Shafiullah博士MD。 Asiul Kabir,糖尿病协会医学院法里德布尔教授副教授。博士Kalyan Rent,Jaurul Islam医学院教授,Kishoregang Dr. Netrokona医学院副教授(C.C)副教授Muntakim Mahmud Saadi教授Ashraf-Zaman,Ad-Din女子医学院教授Manndra Nath Roy教授,联合医学院教授,教授博士又名Habibur Rahman,Sirajganj Dr. Shaheed M. M. Monsur Ali医学院副教授国家预防与社会医学研究所副教授Rubena Haqaue博士M. Tazul Islam,Sheikh Hasina医学院Hobiganj博士助理教授易卜拉欣医学院教授苏丹娜·帕文(Sultana Parvene)博士Jainul Hausee Sikder女士医学院副教授Saminina Shafiullah博士MD。Asiul Kabir,糖尿病协会医学院法里德布尔教授副教授。博士Kalyan Rent,Jaurul Islam医学院教授,Kishoregang Dr. Netrokona医学院副教授(C.C)副教授Muntakim Mahmud Saadi教授Ashraf-Zaman,Ad-Din女子医学院教授Manndra Nath Roy教授,联合医学院教授,教授博士又名Khairuzzaman,教授兼世界医学院教授教授博士Gopalganj教授Sheikh Sayera Khatun医学院教授Golam Morshed Molla博士Moushumi Sen,Anwer Khan现代医学院教授教授IBN SINA医学院教授Abu Kholdun Al-Mahmood
战争博物馆的基本展览位于赫尔辛基的Kruununhaa,战争博物馆的Maneesi和潜艇Vesikko在芬兰堡夏季开放。 2013年夏天,战争博物馆在芬兰堡中部举办了潜艇特别展览,以纪念维西科号70周年,本出版物介绍了展览内容,并补充了有关维西科号2010-2013年翻新项目的部分。多年来,战争博物馆举办了多次专题展览,潜艇,特别是维斯科亚号潜艇,多次出现在这些展览中。然而,在芬兰的潜艇展览上,这是第一次有机会了解潜艇在芬兰附近水域的如此广泛的活动,即使是在二战以外的时期。这些独特的物品(其中一些是首次展出)使士兵的日常生活变得比以往任何时候都更加贴近。此外,从海底升起的物体以感人的方式展示了制造潜艇的目的,即用于战争。展览结合了潜艇老兵的故事、不同时代的照片以及海底潜艇残骸今天的样子的电影片段。芬兰潜艇展览提供了潜艇活动的横截面,特别是 Vesiko 号的过去和现在的状态,Vesiko 号是芬兰唯一一艘幸存至今的潜艇。展览于 2013 年 5 月 8 日至 2014 年 3 月 2 日期间在芬兰堡中心举办,地点不可能是
Ivan Alonso 1,Cristiano Alpigiani 2,Brett Altschul 3,HenriqueAraújo4,Gianluigi Arduini 5,Jan Arlt 6,Leonardo Bardurina 7,AntunardBalaž8,Satvika Bandarupally 9,10,Barry C. Barry C. Barry C. Barish C. Barish C. Barish 11,Michele Barone 13 E Battelier 17,Charles FA Baynham 4,Quentin Beaufils 18,Aleksandar Beli´c 8,JoelBergé19,Jose Bernabeu 20,21,Andrea Bertoldi 17,Robert Bingham 22,23迭戈·布拉斯 24 , 25 , 凯·邦斯 26† , 菲利普·布耶 17† , 卡拉·布赖滕贝格 27 , 克里斯蒂安·布兰德 28 , 克劳斯·布拉克斯迈尔 29 , 28 , 亚历山大·布列松 19 , 奥利弗·布赫穆勒 4 , 30† , 德米特里·布德克 31 , 32 , 路易斯·布加略 33 , 谢尔盖·伯丁 34 , 路易吉·卡恰普奥蒂 35† , 西蒙尼·卡莱加里 36 , 泽维尔·卡尔梅特 37 , 达维德·卡洛尼科 38 , 本杰明·卡努埃尔 17 , 劳伦蒂乌-伊万·卡拉梅特 39 , 奥利维尔·卡拉兹 40† , 多纳泰拉·卡塞塔里 41 , 普拉提克·查克拉博蒂 42 , 斯瓦潘·查托帕迪亚伊 43 , 44 , 32 , Upasna Chauhan 45 , Xuzong Chen 46 , Yu-Ao Chen 47 , 48 , 49 , Maria Luisa Chiofalo 50 , 51† , Jonathon Coleman 34 , Robin Corgier 18 , JP Cotter 4 , A. Michael Cruise 26† , Yanou Cui 52 , Gavin Davies 4 , Albert De Roeck 53 , 5† , Marcel Demarteau 54 , Andrei Derevianko 55 , Marco Di Clemente 56 , Goran S. Djordjevic 57 , Sandro Donadi 58 , Olivier Doré 59 , Peter Dornan 4 , Michael Doser 5† , Giannis Drougakis 60 , Jacob Dunningham 37 , Sajan Easo 22 , Joshua Eby 61 , Gedminas Elertas 34 , John Ellis 7 , 5† , David Evans 4 , Pandora Examilioti 60 , Pavel Fadeev 31 , Mattia Fanì 62 , Farida Fassi 63 , Marco Fattori 9 , Michael A. Fedderke 64 , Daniel Felea 39 , Chen-Hao Feng 17 , Jorge Ferreras 22 , Robert Flack 65 , Victor V. Flambaum 66 , René Forsberg 67† , Mark Fromhold 68 , Naceur Gaaloul 42† , Barry M. Garraway 37 , Maria Georgousi 60 , Andrew Geraci 69 , Kurt Gibble 70 , Valerie Gibson 71 , Patrick Gill 72 , Gian F. Giudice 5 ,乔恩·戈德温 26 、奥利弗·古尔德 68 、奥列格·格拉乔夫 73 、彼得·W·格雷厄姆 44 、达里奥·格拉索 51 、保罗·F·格里恩 23 、克里斯汀·格林 74 、穆斯塔法·京多安 75 、拉特内什·K·古普塔 76 、马丁·海内尔特 71 、埃基姆·T·汉纳梅利 77 、莱昂尼·霍金斯 34 、奥雷利安·希斯 18 、维多利亚·A·亨德森 75 、瓦尔德马尔·赫尔 78 、斯文·赫尔曼 77 、托马斯·赫德 30 、理查德·霍布森 4† 、文森特·霍克 77 、杰森·M·霍根 44 、博迪尔·霍尔斯特 79 、迈克尔·霍林斯基 26 、乌尔夫·以色列森 59 、彼得·耶格利茨 80 、菲利普·杰泽81 , Gediminas Juzeli¯unas 82 , Rainer Kaltenbaek 83 , Jernej F. Kamenik 83 , Alex Kehagias 84 , Teodora Kirova 85 , Marton Kiss-Toth 86 , Sebastian Koke 36† , Shimon Kolkowitz 87 , Georgy Kornakov 88 , Tim Kovachy 69 , Markus Krutzik 75 , Mukesh Kumar 89 , Pradeep Kumar 90 , Claus Lämmerzahl 77 , Greg Landsberg 91 , Christophe Le Poncin-Lafitte 18 , David R. Leibrandt 92 , Thomas Lévèque 93† , Marek Lewicki 94 , Rui Li 42 , Anna Lipniacka 79 , Christian Lisdat 36† 、米娅·刘 95 、JL 洛佩兹-冈萨雷斯 96 、西娜·洛里亚尼 97 、约尔马·卢科 68 、朱塞佩·加埃塔诺·卢西亚诺 98 、Nathan Lundblad 99,Steve Maddox 86,MA Mahmoud 100,Azadeh Maleknejad 5,John March-Russell 30,Didier Massonnet 93,Christopher McCabe 7,Matthias Meister 28,Tadejemister 80,Mical 80 1,Gavin W. Morley 104,JurgenMüller42,Eamonn Murphy 35†,ÖzgürE。Musteğlu,Daniel O'She She。165 L oi 23,Judith Olson 107,Debapriya Pal 108,Dimitris G. Papazoglou 109,Elizabeth pasebet pasembou 4 Ki 111,Emanuele Pelucchi 112,Franck Pereira 18和Santos,Peter Achivski 17 13,114,
Time-resolved oxidative signal convergence across the algae–embryophyte divide 1 2 Tim P. Rieseberg 1, * ,# ,Armin Dadras 1, * , Tatyana Darienko 1 , Sina Post 2 , Cornelia Herrfurth 2,3 , 3 Janine M. R. Fürst-Jansen 1 , Nils Hohnhorst 1 , Romy Petroll 4 , Stefan A. Rensing 5,Thomas 4Pröschold1,6,Sophie de Vries 1,Iker Irisarri 1,7,8,Ivo Feussner 2,3,9,Jan de Vries 1,2,7,10#5 6 1 - Goettingen University of Applipip bioinformatics of Appliped Bioinformatics,Goldschmidtstr。1,37077 7德国Goettingen 8 2 - Goettingen大学,阿尔布雷希特·哈勒植物科学研究所,植物生物化学系,Justus-von-liebig-weg,37077 9 9 Goettingen 9 Goettingen,德国,10 3 - Goettingen,Goettingen for Metherborience and forebornial Inuccomerient ot for Metheriment goet grobbbboiment(Gobb)脂科学,Justus-von-liebig Weg 11,37077德国Goettingen,12 4 - 藻类发展与进化系,Max Planck生物学研究所Tübingen,德国Tübingen,德国,德国,13 5--弗里布尔格大学生物信号研究中心(Bioss),弗里布尔格,弗里布尔氏菌,弗里布尔氏弗里布尔,5-3--奥地利Mondsee 15 7 - GOLDSCHMIDTSTR的校园研究所数据科学(CIDAS)。 33土地上的压力在动力学方面是独特的,需要在光和温度上进行迅速而急剧的变化。 虽然我们34知道土地植物与他们最接近的链球菌藻类亲戚共享35个基因组成的主要组成部分,以进行动态压力反应,但他们的一致作用却几乎没有理解。 这些激酶轮毂已经有41种自来已经综合了多种环境投入。1,37077 7德国Goettingen 8 2 - Goettingen大学,阿尔布雷希特·哈勒植物科学研究所,植物生物化学系,Justus-von-liebig-weg,37077 9 9 Goettingen 9 Goettingen,德国,10 3 - Goettingen,Goettingen for Metherborience and forebornial Inuccomerient ot for Metheriment goet grobbbboiment(Gobb)脂科学,Justus-von-liebig Weg 11,37077德国Goettingen,12 4 - 藻类发展与进化系,Max Planck生物学研究所Tübingen,德国Tübingen,德国,德国,13 5--弗里布尔格大学生物信号研究中心(Bioss),弗里布尔格,弗里布尔氏菌,弗里布尔氏弗里布尔,5-3--奥地利Mondsee 15 7 - GOLDSCHMIDTSTR的校园研究所数据科学(CIDAS)。33土地上的压力在动力学方面是独特的,需要在光和温度上进行迅速而急剧的变化。虽然我们34知道土地植物与他们最接近的链球菌藻类亲戚共享35个基因组成的主要组成部分,以进行动态压力反应,但他们的一致作用却几乎没有理解。这些激酶轮毂已经有41种自来已经综合了多种环境投入。1,37077德国Goettingen 16 8 - 莱布尼兹生物多样性研究中心,莱布尼兹生物多样性变化分析研究所(LIB),汉堡17号博物馆,汉堡,马丁 - 莱瑟 - 莱瑟 - 王子帕特尔茨,20146年汉堡,摩尔群岛,Gogoettingen,Gogoetting, (GZMB),Justus- Von-Liebig植物生物化学系19 WEG 11,37077 Goettingen,德国20 10 10 - Goettingen大学,Goettingen分子生物科学中心(GZMB),应用生物信息学系,21 Goldschmidtstr。1,37077德国Goettingen 22 *同等贡献23 #authors for Noteence:timphilipp.rieseberg@uni-goettingen.de&devries&devries&devries.jan@uni-goettingen.de 24 25 orcid:tim prieseberg:tim prieseberg 000000-0003-35548-848-848-848-848-8475,ARMIN DADRRAS 0000-0001-7649-2388,JanineMr.Fürst-Jansen 0000-0002-5269-8725,26 Tatyana darienko 0000-0002-1957-0076,Cornelia herrfurth:0000-0001-0001-8255-3255,IVOUSS:0000-0001-825-3255,IVOUSSNE: IKER IRISARRI 0000-27 0002-3628-1137,StefanA。 29 30 31摘要32最早的土地植物在适应环境压力方面面临着重大挑战。在这里,我们36种使用光生理学,2.7 TBP的转录组学以及对270多个不同样本的37个代谢物分析分析的时间疗法应力分析,以研究三种38 38 6亿年6亿年的链球菌的应力动力学。42 43引言44地球表面带有光合作用的生命。生物多样性的蓝细菌和藻类在岩石和树皮上形成绿色的45个生物膜,而地衣在最黯淡的山顶上壮成长。通过共表达分析和Granger Causal 39推断,我们预测了一个基因调节网络,该网络在40个乙烯信号成分,Osmosensor和主要激酶的链条上检索古代信号收敛的网络。所有这些都被全球征服土地的血统所吸引了46:土地植物(胚胎)1。与47种链植物藻类一起,土地植物属于链球菌2。系统基因组学分析表明,48个Zygnematophyceae是土地植物2-4的最接近的链球菌藻类亲戚,比较49基因组学已经取得了重大进展,在建立50种链球菌藻类和陆地植物之间的共享性状目录和陆地植物之间的共享目录中取得了重大进展。然而,我们才开始理解在征服土地11时如何使用这些基因51的功能优势。几种协同的52个特性已塑造了征服土地的植物12,包括多细胞发育13,14、53传播15,共生16,17和压力反应18。在后者的情况下,最早的土地植物必须克服多种压力源,现代地块植物通过调整55的生长和生理学19。与水相反,土地上非生物压力的标志之一是其56个动态性质:土地上的生命涉及温度,光或水的快速和急剧变化57可用性18。我们专注于两个陆地压力源 - 强烈波动的温度(冷和热量58应力)和光条件(高光应力和恢复)。类胡萝卜素在叶绿体的氧化应激缓解网络中是不可或缺的6259陆地应激源影响植物和藻类生理学,尤其是通过质体中的60种活性氧(ROS)产生的。质体是环境61挑战20-22的信号中心。