(ix) 最后就读学校的品格证明原件(另加 1 份复印件) (x) TC/移民证明原件(另加 1 份复印件) (xi) 由 CMO/CMS 副署的医疗证明,原件随附。(另加 1 份复印件) (xii) 教育差距宣誓书原件(另加 1 份复印件) (xiii) 反欺凌承诺书打印件 http://www.antiragging.in。(另加 1 份复印件) (xiv) 居住证明(如适用)(另加 2 份复印件) (xv) 类别证明(如适用)(另加 2 份复印件) (xvi) 子类别证明(如适用)(另加 2 份复印件) (xvii) 随附个人资料格式。(另加 2 份复印件) (xviii) 庄严自愿声明表(随附格式)(另加 1 份复印件) (xix) Adhaar 卡(另加 2 份复印件) (xx) ABC 身份证
吸烟、社会经济地位、糖尿病等。截至 2021 年,世界心脏联盟报告称,超过 5 亿人受到 CVD 影响,其中 2050 万人死亡与 CVD 有关,占全球死亡人数的 1/3。尽管新的治疗方案和生活方式的改变已被证明可以改善 CVD 患者的预后 ( 2 ),但与 35 年前记录的与 CVD 相关的死亡人数相比,这一数字约高出 60%。随着当前医学的所有进步,以下高数字主要是由于人口增长和老龄化 ( 2 )。动脉粥样硬化这个词源于希腊语词根,可以分解为“动脉粥样硬化”,对应于脂肪堆积和巨噬细胞,以及“硬化”,表示由结缔组织、平滑肌细胞和白细胞组成的纤维组织。 19 世纪初,Jean Lobstein 引入了“动脉粥样硬化”一词,为动脉疾病带来了更深刻的含义和理解 (3)。几年后,该领域的两位先驱提出了相互矛盾的动脉粥样硬化发展理论。一方面,奥地利医生 Carl Von Rokitansky 在“血栓形成”理论中提出了动脉粥样硬化发展的假说。他推测机械原因或其他原因造成的血管损伤是动脉粥样硬化斑块形成的原因 (4)。另一方面,德国医生 Rudolf Virchow 假设血管内已经存在的各种免疫促炎细胞簇是动脉粥样硬化发展的原因 (5)。直到 90 年代末,Russell Ross 才提出损伤后的慢性炎症会导致一系列事件,最终形成动脉粥样硬化斑块 ( 6 , 7 )。Carl Von Rokitansky 的研究中获得的人体样本表明,早期病变中存在 T 淋巴细胞,从而具体说明了慢性炎症对动脉粥样硬化发展的重要性 ( 3 )。如前所述,动脉粥样硬化的发展是多方面的,我们不知道为什么动脉粥样硬化的形成和进展会伴有血管和内皮不稳定以及免疫细胞过度激活。然而,这一切的核心是一个慢性炎症过程。这篇综述文章将讨论动脉粥样硬化发展的阶段、参与其发展的免疫细胞和免疫介质。
查mu(Skuast-J)的Sher-e-e-Kashmir农业科学与技术大学见证了一场陈旧的为期两天的全国性的“在农业整体发展生物化学和生物技术方面的新兴innovation”的全国性大会。该会议由新德里的植物生物化学与生物技术学会年度大会举行,并吸引了200多名代表,其中包括杰出的科学家,研究人员,研究人员,政策制定者,研究学者,以及来自印度领先的大学和学院的学生。印度政府科学技术的Hon'ble联盟部长Jitendra Singh博士,并以有见地的主题演讲为会议开幕。 他敦促该行业投资于农业研发,利用印度的专业知识,创新和奉献精神。 进一步强调,北印度是众多主要研究机构的枢纽,为科学进步构成了一个强大的集群。 他强调,印度的下一个增长故事是由喜马拉雅国家塑造的,像Skuast-J这样的大学在推动农业和技术进步方面发挥了关键作用。 B.N.教授 Skuast-Jammu的Hon'ble副校长Tripathi欢迎来宾和参与者,强调了大学的成就和致力于推进农业研究,可持续性农业和行业 - academia合作的承诺。 荣誉嘉宾S.L.博士 Mehta(社会前主席)和K.S.教授 T.R.博士 他强调了现代生物技术的潜力印度政府科学技术的Hon'ble联盟部长Jitendra Singh博士,并以有见地的主题演讲为会议开幕。他敦促该行业投资于农业研发,利用印度的专业知识,创新和奉献精神。进一步强调,北印度是众多主要研究机构的枢纽,为科学进步构成了一个强大的集群。他强调,印度的下一个增长故事是由喜马拉雅国家塑造的,像Skuast-J这样的大学在推动农业和技术进步方面发挥了关键作用。B.N.教授 Skuast-Jammu的Hon'ble副校长Tripathi欢迎来宾和参与者,强调了大学的成就和致力于推进农业研究,可持续性农业和行业 - academia合作的承诺。 荣誉嘉宾S.L.博士 Mehta(社会前主席)和K.S.教授 T.R.博士 他强调了现代生物技术的潜力B.N.教授Skuast-Jammu的Hon'ble副校长Tripathi欢迎来宾和参与者,强调了大学的成就和致力于推进农业研究,可持续性农业和行业 - academia合作的承诺。荣誉嘉宾S.L.博士Mehta(社会前主席)和K.S.教授T.R.博士 他强调了现代生物技术的潜力T.R.博士他强调了现代生物技术的潜力Chandrasekar(查mu大学副校长)也发表了就职演说,强调了生物化学和生物技术在农业进步中的作用。Sharma,前DDG(CS)兼植物生物化学与生物技术学会主席,概述了该协会在推进植物生物化学和生物技术研究中的作用。
背景:在最近的Covid-19大流行期间,锡克教宗教界的成员参加了医学,牙科,护理或盟友卫生学校,或者已经从事医学专业的人必须做出一个艰难的决定,是否要剃光他们的胡须,以继续他们的学校和职业,还是改变了他们的投影专业或改变他们的专业志向或职业。他们面临着艰巨的任务,即确保自己受到职业空中危害,同时也遵守宗教和文化期望。在大流行的最初阶段缺乏可用的替代方案进一步需要探索创造性解决方案。
摘要:脊髓损伤(SCI)后轴突再生的主要障碍是由星形胶质细胞和小胶质细胞介导的神经炎症。我们先前证明,仅基于石墨烯的胶原凝胶可以减少SCI中的神经炎症。然而,他们的再生潜力知之甚少和不完整。此外,尽管存在与基于干细胞的治疗的应用有关的限制,但干细胞在脊髓再生中既表现出神经保护性和再生特性。在这项研究中,我们分析了人骨骨髓间充质干细胞(BM-MSC)负载的石墨烯连接胶原蛋白冰期(GR-COL)在SCI的胸腔(T10-T11)半部半分裂模型中的再生能力。我们的研究发现,BM-MSC负载的GR-COL可改善轴突再生,通过降低星形胶质细胞反应性来降低神经炎症,并促进M2巨噬细胞极化。与GR-COL和损伤组对照相比, BM-MSC负载的GR-COL具有增强的再生潜力。 下一代测序(NGS)分析表明,BM-MSC负载的GR-COL调节JAK2-STAT3途径,从而减少了反应性和疤痕形成的星形胶质细胞表型。 BM-MSC负载的GOR组中神经炎症的减少归因于Notch/Rock和STAT5A/B和STAT6信号的调制。 总体而言,基因集富集分析表明,通过调节PI3/AKT途径,局灶性粘附激酶和各种炎症途径,通过调节分子途径(例如PI3/AKT途径),通过调节分子途径(例如PI3/AKT途径),通过调节分子途径来促进轴突再生。BM-MSC负载的GR-COL具有增强的再生潜力。下一代测序(NGS)分析表明,BM-MSC负载的GR-COL调节JAK2-STAT3途径,从而减少了反应性和疤痕形成的星形胶质细胞表型。BM-MSC负载的GOR组中神经炎症的减少归因于Notch/Rock和STAT5A/B和STAT6信号的调制。总体而言,基因集富集分析表明,通过调节PI3/AKT途径,局灶性粘附激酶和各种炎症途径,通过调节分子途径(例如PI3/AKT途径),通过调节分子途径(例如PI3/AKT途径),通过调节分子途径来促进轴突再生。关键词:人骨髓间充质干细胞,RNA测序,石墨烯,胶原蛋白,冷冻凝胶,神经炎症
目录1。有机农业1.1。有机农业的类型1.2。需要有机农业1.3。限制1.4。受益1.5。相关性1.6。有机农业的优势和缺点1.7。有机农业的方法或技术2。可持续农业和有机农业2.1。背景2.2。可持续农业的特征2.3。可持续农业的定义2.4。有机农业2.5。国家有机生产计划(功能)3。概念,定义和组件3.1。概念和定义3.2。有机与自然农业3.3。有机农业的基本特征3.4。有机农业系统的关键原则3.4.1。混合农业3.4.2。作物旋转3.4.3。有机周期优化3.4.4。有机和常规农业的目标3.5。有机农业中的选择3.5.1。纯有机农业3.5.2。综合绿色革命耕作3.5.3。综合农业系统3.6。有机农业的管理3.7。有机农业的优势3.8。有机农业的障碍3.9。有机农业的组成部分(VI)
人脑分为控制和协调独特功能的各种解剖区域。前额叶皮层(PFC)是一个大脑区域,包括一系列神经元和非神经元细胞类型,与皮层区域共享广泛的互连,并且在认知和记忆中起关键作用。通过胚胎发育及时出现不同的细胞类型对于解剖学上完美且功能性的大脑至关重要。无法直接追踪人脑中的细胞命运发展,但是单细胞转录组测序(SCRNA-SEQ)数据集为剖析细胞异质性及其分子调节剂提供了机会。在这里,使用胎儿阶段的人类PFC的SCRNA-SEQ数据,我们在PFC发育过程中阐明了不同的瞬时细胞态及其基因调节电路。我们进一步确定,不同的中间细胞状态由特定基因调节模块组成,该模块使用离散的发育路径到达末端命运所必需的。此外,在使用硅基因敲除和过表达分析中,我们在少突胶质细胞祖细胞的谱系规范过程中验证了至关重要的基因调节成分。我们的研究说明了独特的中间状态和特定的基因相互作用网络,这些网络需要进一步研究其对典型大脑发育的功能贡献,并讨论如何收获这些知识来在挑战神经发育障碍方面进行治疗干预。
西蒙·辛格(Simon Singh)的代码书是密码学历史,意义和用法各种情况下的详细说明。这本书将读者带入从古老的文明到现代加密技术的旅程。它始于密码学介绍,解释了其在保护敏感信息方面的重要性。这本书深入研究了《谜》机器的故事,这是第二次世界大战期间德国人使用的复杂加密设备。辛格讨论了包括艾伦·图灵(Alan Turing)在内的布莱奇利公园(Bletchley Park)的代码破坏者的努力,后者在破译《谜》中发挥了至关重要的作用。代码簿深入研究了《谜》机器的有趣故事,其复杂性以及第二次世界大战期间代码破解者所做的努力。这本书突出了代码破解历史上的重要性,展示了加密的力量以及加密和解密之间不断的战斗。它还强调了致力于打破代码和保护自己的国家的个人的才华和毅力。探索了隐性分析的艺术,揭示了在整个历史上使用隐性药物采用的各种技术和方法,以破解秘密信息。这个收获强调了密码分析在密码学发展中的重要性,因为理解漏洞推动了更强,更安全的算法的发展。1970年代推出的公共密钥密码学彻底改变了安全沟通。代码簿解释了其原理和意义,强调了其对现代加密方法的影响。与传统的对称加密不同,公共密码密码学使用一对与数学相关的密钥进行加密和解密。探索了加密货币与数字货币之间的联系,尤其是专注于区块链技术。加密货币依靠加密算法来确保交易安全性和完整性。了解密码学在数字货币中的作用可以帮助个人应对其复杂性,并就其参与做出明智的决定。最后,代码书讨论了密码学对隐私的影响,强调了其在保护个人信息,确保在线沟通和维护个人自由方面的重要性。在增加监视和数据泄露的时代,了解加密原则可以使个人有权保护其隐私权。个人可以利用安全的通信渠道来减轻与数字互动相关的风险,从而减少漏洞。密码学的演变是由历史里程碑和技术进步塑造的,突出了其持续的发展和适应。通过理解这种演变,个人可以欣赏现代加密技术的复杂性和复杂性,并认识到创新在保持潜在威胁之前的重要性。人类元素在密码学中起着至关重要的作用,而破码者,间谍和其他个体对其历史做出了重大贡献。这方面强调了人类创造力和毅力在塑造密码学的影响和有效性方面的重要性。西蒙·辛格(Simon Singh)的《代码书》(The Code Book)进行了深入的探索,对整个人类历史上的代码和密码学提供了深入的探索,揭示了著名的密码和密码系统背后的秘密。Singh解释了编码和加密的基础知识,突出了它们在保护机密信息方面的重要性。他还深入研究了历史悠久的密码,包括埃及和伊斯兰等古代文明所使用的密码。这本书阐明了著名的案件,例如苏格兰女王玛丽(Mary),他利用替代者密码与阴谋家进行交流,最终被熟练的隐立室分析师托马斯·菲利普斯(Thomas Phelippes)解密。加密难题在第二次世界大战中起着关键作用,尤其是在纳粹使用了谜机器的情况下。艾伦·图灵(Alan Turing)和他在布莱奇利公园(Bletchley Park)的团队成功地破译了这一复杂的代码,缩短了战争并挽救了无数的生命。在“代码书”中,西蒙·辛格(Simon Singh)深入研究了历史密码和现代加密技术,突出了他们的日常应用。他解释了RSA算法,数字签名以及密码学家如何适应不断发展的技术,同时应对量子计算的威胁。辛格还强调了守则对人类历史的深远影响,说明了它们在军事冲突,政治阴谋,经济间谍和技术进步中的作用。这本书庆祝知识创新和解决问题的能力,在整个历史上介绍了著名的密码学家。通过强调好奇心,持久性和跨学科合作的重要性,辛格激发了读者揭示代码的奥秘。“代码书”是对密码学对我们世界的影响的引人入胜的叙述和信息丰富的探索。本基本读物非常适合任何对数学,历史和技术交集感到好奇的人,寻求对代码及其对我们世界的持久影响的更深入了解。
抗菌耐药性(AMR)是本世纪全球公共卫生最严重的挑战之一。2014年4月发布的第一本《世界卫生组织全球关于AMR监视的报告》首次从国家和国际监视网络中收集了数据,证明了这种现象在世界许多地区的程度,以及在现有监视中存在很大的差距。鉴于多种耐药细菌的报道增加以及新许可治疗的短缺,研究人员已经开始研究严重且罕见的疾病,作为新的抗生素供应。链霉菌是革兰氏阳性丝状细菌的属,代表了抗生素研究中天然产物发现的基石。链霉菌物种以其创造广泛的生物活性次级代谢物的能力而闻名,其中包括超过三分之二的治疗抗生素。本文探讨了链霉菌的生物学和基因组特征,它们在自然产物生物合成中的作用以及最近利用这些生物来进行新型抗生素发现的进步。我们还讨论了解决抗生素耐药性和策略的挑战,以最大程度地利用链霉菌通过现代生物技术的潜力。抗菌素耐药性(AMR)已成为二十一世纪最严重的公共卫生问题之一,威胁着有效的预防和治疗不再因用细菌,寄生虫,病毒和真菌引起的不再受到常见抗生素易于对抗其对抗它们而不再敏感的感染范围。
Chaudhary Charan Singh大学,Meerut(以前是Meerut,Meerut),在1965年根据北方邦州立大学法案编号成立为学术枢纽。xiii。开创性的计划于1969年遵循知识传播的主要目标。此后,它拥有农业带的位置责任,并融合了科学和文化创新的追求,反映了其课程和教学学习计划。该大学的郁郁葱葱的绿色校园,占地221.1英亩,建筑面积约为37.40英亩。大学房屋宽敞,与沥青的道路和高桅杆路灯相连,并具有郁郁葱葱的天然绿色植物。大学有714个辅助政府和自我建立的学院/机构,拥有超过52.5万名学生。大学“ Yatra Satyasya paramam nidhanam”的座右铭(真理拥有至高无上的住所)在其愿景和使命中反映了。大学围绕学生繁荣的主流轨道。率先实施2020年的国家教育政策,在过去五年中通过课程修订88%表现出敏感性。在Web of Science授予研究卓越引用奖项的下,Clarivate授予了教师和学者的认真研究参与,印度是印度最好的女性研究员。