摘要。植物组织培养已成为现场保护生物多样性的重要工具,在保护濒危植物物种方面具有独特的优势。本文概述了植物组织培养的原理和技术,并研究了其在现场保护工作中的应用。它讨论了遗传多样性保存的重要性以及传统保护方法中面临的挑战。此外,本文探讨了植物组织培养如何通过实现稀有和濒危植物物种的大规模传播,维持遗传稳定性并促进将物种重新引入其自然栖息地。案例研究和示例说明了植物组织培养在全球生物多样性保护工作中的成功应用。本文以讨论未来的方向以及利用植物组织培养的潜在进步来结束。
摘要。本文基于材料科学和资源利用的基本原理和原则。原位资源利用率(ISRU)可以充分利用太空中的材料来产生人类生存甚至星际迁移计划所需的资源。Bio-based biofuel production solutions can address human consumption in space exploration while allowing the production of fuels in a sustainable manner, with minimal inputs and producing cleaner, more environmentally friendly fuels.ISRU biofuel production can be achieved by directly converting inorganic carbon (atmospheric CO2) into target compounds as biofuels by autotrophic microorganisms, or by fixing carbon and then use将生物量或复杂底物转化为靶化合物的代谢工程,完成了两步生物燃料生产过程。在本文中,我们通过ISRU调查了在火星上生产生物燃料生产的潜在微生物细胞工厂,从而导致了一些相关的突破和发现。本文通过一系列研究推进了研究内容的发展。在本文中,我们研究并优化了基于基本燃料性能研究的新能源燃料的使用。根据先前的基础研究,本文在能源研究领域提供了一种新的思维和研究方式。
图。3:2d XRD数据投影到2θ -ϕ(方位角角)空间被1D方位角集成的数据叠加。使用1S集成时间获取数据。(a)和(d):静态压缩后的样品的结构和纹理,在300 K.(b)和(e)时:分别在HP加热后最高为1360 K和1360 K和1450 K时发生的结构和纹理变化。(c)和(f):动态加载后样品的结构,然后淬火至300 K;在这两种情况下,最终的铁结构都对应于ϵ相。
更深入地了解色谱吸附剂的纳米级和中观级结构以及介质中蛋白质的分布,对于从机制上理解使用这些材料的分离过程至关重要。使用传统技术来表征这种规模的介质结构和其中的蛋白质吸附具有挑战性。在本研究中,我们提出了一种新颖的树脂表征技术,该技术能够在典型的色谱条件下原位测量树脂内吸附蛋白质层的结构。设计并制造了一个石英流通池,用于小角度中子散射 (SANS),以便在单克隆抗体吸附过程中测量二氧化硅基蛋白质 A 色谱树脂的纳米级到中观级结构。我们能够使用对比匹配方法实时检查不同蛋白质负载和洗涤缓冲液下树脂的孔间(˜ 133 nm)和孔径(˜ 63 nm)相关性以及平面吸附抗体分子(˜ 4.2 nm)相关性。当将 0.03 M 磷酸钠与 1 M 尿素和 10% 异丙醇缓冲液(pH 8)作为洗涤缓冲液引入系统时,它会破坏系统的秩序,导致吸附抗体部分展开,这可以通过平面蛋白质相关性的丧失来证明。该方法为研究色谱树脂内的纳米级结构和配体固定提供了新方法;也许最重要的是了解在复制色谱柱的样品环境中,在不同流动相条件下吸附蛋白质在介质中的原位行为。
为了验证新型处理技术对地下水中多氟烷基和全氟烷基物质去除效果,项目团队将进一步研究现场吸附剂再生的潜力。吸附剂再生可以通过直接破坏吸附在过滤介质上的 PFAS(例如热处理、电化学处理或声/超声波处理)或将吸附的 PFAS 洗脱到小液体基质中来实现。本研究旨在展示后一种概念,其中小批量的含 PFAS 液体再生剂将随后使用由 NAVFAC 总部资助的项目开发的中试规模超声波分解反应器进行破坏。
1肯塔基大学肯塔基大学物理与天文学系,肯塔基州列克星敦40506,美国2化学与材料工程系,肯塔基大学,肯塔基大学,肯塔基州肯塔基州40506,美国3美国通用汽车全球研究与发展中心,沃伦,密歇根州沃伦,密歇根州48090,美国48090,美国1肯塔基大学肯塔基大学物理与天文学系,肯塔基州列克星敦40506,美国2化学与材料工程系,肯塔基大学,肯塔基大学,肯塔基州肯塔基州40506,美国3美国通用汽车全球研究与发展中心,沃伦,密歇根州沃伦,密歇根州48090,美国48090,美国
摘要:基于硅(SI)的阳极由于其高理论能力(〜3600 mAh/g)而对下一代锂(Li) - 离子电池都有希望。然而,它们在第一个周期中从初始固体电解质相(SEI)形成中遭受了大量的容量损失。在这里,我们提出了一种原位预定方法,将Li金属网格直接集成到细胞组件中。一系列LI网格被设计为预先构想试剂,这些试剂适用于电池制造中的SI阳极,并自发地添加了电解质。li网格的各种孔隙率构成预定的量相当于控制预定程度。此外,图案的网格设计增强了预定的均匀性。具有优化的预定量,基于SI的原位预定型完整细胞显示150个周期的容量> 30%的能力提高。这项工作提出了一种提高电池性能的便捷预定方法。关键字:锂离子电池,预定,硅阳极
CMEMS 的发展与最终用户现有和未来的需求紧密相关。但是,用户需求不会直接转化为观测需求;它们必须经过服务的增值链;为此,需要考虑地球观测、数值建模和数据处理技术领域的新科学和技术进步,以定义正确发展服务所需的要求。CMEMS 服务发展战略及其相关的研发重点 [3] 引入了一套总体目标和相关行动以及研发重点,以将服务从初始状态发展为成熟、先进、领先和创新的哥白尼服务。需要进行重大发展,特别是要对海洋进行精细监测和预报,并改善对沿海地区的监测。这对于海上安全、海上运输、搜索和救援、污染监测和海上作业等关键应用至关重要。CMEMS 还必须提高其监测和预测海洋生物地球化学状态的能力(例如海洋碳吸收、酸化、脱氧、富营养化、水质、生物生产力)。这是海洋战略框架指令 (MSFD) 所要求的,以指导政府和行业的决策和行动,并为海洋资源(渔业、水产养殖)的管理提供信息。现场观测系统的未来发展需要与这些目标保持一致。
自2022年以来,地球创新技术研究所(RITE)和CSIRO开发了一个关键的协作,用于推进碳捕获和存储技术,特别着眼于了解故障系统及其对CO 2存储的影响。Rite是一个日本研究组织,致力于开发和推广用于环境保护和可持续发展的先进技术,包括碳捕获和存储。通过共同努力,这些受人尊敬的组织结合了他们的专业知识,以研究故障和地质形成如何与注射的CO 2相互作用并展示创新的监测技术,这是确保长期碳存储安全性和可靠性的关键因素。此协作可以更精确地建模和管理与故障相关风险,从而改善了减轻潜在泄漏并提高存储可靠性的技术。这项研究的见解对于精炼存储方法和开发强大的监测系统至关重要,这极大地有助于全球减少温室气体排放和实现气候目标的努力。这项研究的见解对于精炼存储方法和开发强大的监测系统至关重要,这极大地有助于全球减少温室气体排放和实现气候目标的努力。
