召集人委员会:❖泰米尔纳德邦政府高等教育部门的首席秘书Pradeep Yadav先生。❖I.A.S技术教育专员T. Abraham先生,泰米尔纳德邦政府技术教育局。❖美国钦奈EEE Anna大学的S. USA教授兼主席。赞助人:钦奈安娜大学注册商J. Prakash博士:钦奈安娜大学主任(CCC)主任P. Hariharan博士。院长:T。SenthilKumar博士,Trichy Uce-Bit校园。组织秘书:特里奇UCE-BIT校园部负责人P. Suresh Kumar博士。协调员:T。P. Rajesh博士K. Ravi Shankar博士T. Gajendran博士组织委员会成员:V。Pugalenthi博士A. S. Maheshwari博士S. S. S. geetha博士B. Anandaraj博士B. S. Sudhakar Gandhi博士博士
Babar Hussain 1,2,Bala A.Akpınar3,Michael Alaux 4,Ahmed M. Algharib 5,DeepMala Sehgal 6,Zulfiqar Ali 7,Gudbjorg I. Aradottir 8,Jacqueline Batley 9,Arnaud Bellec 10,Arnaud Bellec 10,Alison R. Alison R. cestive cestive cestive cestive cestive cestive cestive cestive cestivical R. UX 15,Munevver Dogramaci 16,Gabriel Dorado 17,Susanne Dreisigacker 6,David Edwards 18,Khaoula El-Hassouni,Kell 2019 Melania Figueroa 22,SergioGálvez,23,Kulvinder S. Gillvinder 24,Kulvinder 24,Liubov govta 21,Albry gogran goger 28, Crespo-Herrera 6,Abrahim,Benjamin 29 31,Tamar Krugman 21,Yinghui Li 21,Shuyu Liu 29,Amer F. Mahmoud 32,Alexey Morgounov 33,Tugdem Muslu 34,Tugdem Muslu 34,Faiza Naseer 25 Nolds 6,Rajib Roychowdhury 21,Jackie Rudd 29,Taner Z. Sen 11,Sivakumar Sukumaran 6,Bahar Sogutmaz Ozdemir 38,Vijay Kumar Tiwari 39,Naimat Ullah 40
评论文章 白血病干细胞的当前概念:起源、特征及其在急性髓系白血病中的临床意义 Visaali Sivakumar、Soundarya Ravi、Prabhu Manivannan* *通讯作者:drprabhumanivannan@gmail.com 摘要:尽管治疗方法取得了重大进展,但被诊断患有急性髓系白血病 (AML) 的患者仍然面临不良预后,即使在最初完全缓解后也经常会复发。复发的发生是由于常规治疗无法消除骨髓内被称为白血病干细胞 (LSC) 的特定细胞亚群。这些特殊细胞表现出自我更新能力,并具有增殖和分化为白血病母细胞的能力。LSC 中多种基因突变的积累使其对标准化疗产生抗药性。已经开展了多项研究来识别 LSC 的表型特征和遗传特征,目的是将它们与正常的造血干细胞 (HSC) 区分开来。了解 LSC 在 AML 治疗耐药性中的作用为开发针对性和更精确的治疗方法铺平了道路,尤其是针对复发性 AML 患者,而不会影响健康的 HSC。本综述详细阐述了 LSC 的起源、表型和基因型特征,以及它们在 AML 生物学中的作用,并简要介绍了针对 LSC 的疗法。关键词:急性髓系白血病、白血病干细胞、免疫表型、靶向治疗、复发性 AML
电子邮件 ID 姓名 房间号 PABX @iitm.ac.in 董事会编号:IVRS 8000/9000 主任 Bhaskar Ramamurthi ADB 5 8001 bhaskar 22570694 主任办公室 director 秘书 1 ADB 5 8002 dirsecy 秘书 2 ADB 5 传真 ADB 5 8003 办公室/董事会会议室 ADB 5 8004 dooffice 访客室 ADB 5 8005 会议室 ADB 5 8006 院长 院长(行政) P. Sriram ADB 2 8020 sriram 秘书(和传真) ADB 2 8021 sitala 办公室 ADB 2 8022 deanadmn 院长(学术课程) deanac K. Ramamurthy ADB 4 8030 vivek 秘书 ADB 4 8031 dacoffice 办公室 ADB 4 8032 院长(学术研究) deanar Saritkumar Das ADB 4 8040 skdas 秘书 ADB 4 8041 daroffice 办公室(传真) ADB 4 8042 院长(学生) MS Sivakumar 电话 EX 2nd F 8050 mssiva 秘书 电话 EX 2nd F 8051 dost 办公室(传真) 电话 EX 2nd F 8052 dostoffice 院长(I&AR) R. Nagarajan ICSR SF 8070 deaniar 院长(IC&SR) Krishnan Balasubramanian ICSR FF 8060 balas 秘书 ICSR FF 8061 deanicsr 办公室 ICSR FF 8062 传真 22570545 院长(规划) deanplan R. David Koilpillai ADB 3 8080 davidk 秘书 ADB 3 8081 dpoffice 传真 ADB 3 8082
A 3D adrenocortical carcinoma tumor platform for preclinical modeling of drug response and matrix metalloproteinase activity Priya H. Dedhia 1,2,3, *, Hemamylammal Sivakumar 4 , Marco A. Rodriguez 4 , Kylie G. Nairon 4 , Joshua M. Zent 4 , Xuguang Zheng 1 , Katie Jones 4 , Liudmila Popova 1,Jennifer L. Leight 3,4,5, *和Aleksander Skardal 3,4,5, * 1外科肿瘤学部,俄亥俄州立大学和Arthur G. James G. James G. James综合癌症中心,俄亥俄州哥伦布,美国,美国。2转化治疗计划,俄亥俄州立大学和美国俄亥俄州哥伦布市的Arthur G. James综合癌症中心。 3美国俄亥俄州立大学癌症工程中心,美国俄亥俄州哥伦布。 4美国俄亥俄州立大学工程学院生物医学工程系,美国俄亥俄州哥伦布。 5癌症生物学计划,俄亥俄州立大学和美国俄亥俄州哥伦布市的Arthur G. James综合癌症中心。 *通信Priya Dedhia,医学博士,俄亥俄州立大学和Arthur G. James综合癌症中心816 BioMedical Research Tower 460 W.俄亥俄州哥伦布市460W。 W. 12 th Ave Columbus, OH 43210 leight.1@osu.edu Aleksander Skardal, PhD Department of Biomedical Engineering The Ohio State University 3022 Fontana Labs 140 W. 19 th Ave Columbus, OH 43210 Tel: 614-247-6643 skardal.1@osu.edu2转化治疗计划,俄亥俄州立大学和美国俄亥俄州哥伦布市的Arthur G. James综合癌症中心。3美国俄亥俄州立大学癌症工程中心,美国俄亥俄州哥伦布。4美国俄亥俄州立大学工程学院生物医学工程系,美国俄亥俄州哥伦布。 5癌症生物学计划,俄亥俄州立大学和美国俄亥俄州哥伦布市的Arthur G. James综合癌症中心。 *通信Priya Dedhia,医学博士,俄亥俄州立大学和Arthur G. James综合癌症中心816 BioMedical Research Tower 460 W.俄亥俄州哥伦布市460W。 W. 12 th Ave Columbus, OH 43210 leight.1@osu.edu Aleksander Skardal, PhD Department of Biomedical Engineering The Ohio State University 3022 Fontana Labs 140 W. 19 th Ave Columbus, OH 43210 Tel: 614-247-6643 skardal.1@osu.edu4美国俄亥俄州立大学工程学院生物医学工程系,美国俄亥俄州哥伦布。5癌症生物学计划,俄亥俄州立大学和美国俄亥俄州哥伦布市的Arthur G. James综合癌症中心。*通信Priya Dedhia,医学博士,俄亥俄州立大学和Arthur G. James综合癌症中心816 BioMedical Research Tower 460 W.俄亥俄州哥伦布市460W。 W. 12 th Ave Columbus, OH 43210 leight.1@osu.edu Aleksander Skardal, PhD Department of Biomedical Engineering The Ohio State University 3022 Fontana Labs 140 W. 19 th Ave Columbus, OH 43210 Tel: 614-247-6643 skardal.1@osu.edu
用于药物反应和基质金属蛋白酶活性临床前建模的 3D 肾上腺皮质癌肿瘤平台 Priya H. Dedhia 1,2,3,*、Hemamylammal Sivakumar 4、Marco A. Rodriguez 4、Kylie G. Nairon 4、Joshua M. Zent 4、Xuguang Zheng 1、Katie Jones 4、Liudmila Popova 1、Jennifer L. Leight 3,4,5,*、和 Aleksander Skardal 3,4,5,* 1 美国俄亥俄州哥伦布市俄亥俄州立大学和 Arthur G. James 综合癌症中心外科肿瘤学部。 2 美国俄亥俄州哥伦布市俄亥俄州立大学和 Arthur G. James 综合癌症中心转化治疗项目。 3 美国俄亥俄州哥伦布市俄亥俄州立大学癌症工程中心。 4 美国俄亥俄州哥伦布市俄亥俄州立大学工程学院生物医学工程系。5 美国俄亥俄州哥伦布市俄亥俄州立大学和亚瑟·詹姆斯综合癌症中心癌症生物学项目。 * 通讯作者 Priya Dedhia,医学博士,哲学博士 外科肿瘤科 俄亥俄州立大学和 Arthur G. James 综合癌症中心 816 生物医学研究大楼 460 W. 12 th Ave Columbus, OH 43210 priya.dedhia@osumc.edu Jennifer Leight,哲学博士 生物医学工程系 俄亥俄州立大学 886 生物医学研究大楼 460 W. 12 th Ave Columbus, OH 43210 leight.1@osu.edu Aleksander Skardal,哲学博士 生物医学工程系 俄亥俄州立大学 3022 Fontana Labs 140 W. 19 th Ave Columbus, OH 43210 电话:614-247-6643 skardal.1@osu.edu
高度信心,气候变化对陆地,淡水,沿海和开放海洋生态系统造成了不可逆转的损害。在过去的40年中,全球发生了大约0.85 C的变暖,没有足够的缓解策略,全球表面温度将继续升高。人类影响很可能导致全球温度的升高以及极端极端诸如温暖温度的极端事件的升高(IPCC,2022年)。南亚是世界上最脆弱的地区之一,具有气候变化的影响(Sivakumar&Stefanski,2010年),具有变暖趋势的迹象,并且极端温度极端变暖(IPCC,2022年)。气候变化已被证明会影响粮食生产,使该地区到2030年有粮食短缺,并在将来引起粮食安全问题(Acharya等,2014; Bandara&Cai,2014)。极端温度,大雨,洪水和干旱会产生负面影响,甚至可能破坏收获(Gornall等,2010)。印度的人口非常容易受到极端温度的影响,并且热浪严重程度的增加与印度与热有关的死亡率的增加有关(Mazdiyasni等人,2017年)。热浪在过去100年中导致了许多印度死亡(De等,2005)。与印度热浪有关的死亡率在1970年至2019年之间有所增加。与其他极端天气事件相比,热浪的影响每个州有所不同。例如,安得拉邦是受热浪引起的死亡率增加60%的死亡率,随后odi-sha的影响最大,增加了20%(Ray等,2021)。印度的大部分热浪通常发生在季风前季节(4月,5月和6月),可以覆盖该国的大量范围(Pai等,2013)。但是,在夏季(6月,7月和8月,JJA)季节,高温仍然可以持续存在,因此,估计这种情况至关重要,因为在未来情况下可能会发生气候变化。例如,在印度JJA期间积极发生的季风降水也表现出发作日期的时间变化
改善运输评估的实践状态以适应传统旅行时间的生产性使用,旅行时间被视为承担负担,同时将人和商品从一个地方移至另一个地方,以启动经济和休闲活动。最近,鉴于人们不断获得工具和旅行环境(包括连接和自动驾驶汽车的旅行环境),这一假设有助于促进旅行时参与工作或休闲任务。在运输评估问题的背景下,质量提高了车辆时间(IVT)的最直接后果是由于影响旅行持续时间的政策和投资而导致的福利量化。如果我们认识到某些IVT值得,那么运输评估框架应该能够反映这一点,并实现利用货币证据来评估IVT质量的政策。由于缺乏可实现的框架和数据收集协议,目前不是这种情况,这些协议将指导适当的努力以保持一致和可比性。没有对方法和实践的增强,对基础设施项目的评估和运输政策的评估可能会导致不准确的结果,从而导致效率低下,效率低下(公共)资源分配以及错过的机会驱动运输部门的可持续性。该博士学位项目的目标是通过提出建模框架和数据收集实践的扩展来改善运输评估实践,以明确考虑和货币化旅行时间的产生影响。预期的结果应允许等于不同类型的旅行时间使用,同时还可以容纳行为异质性。为此,该研究应开放新的建模范式,尤其是基于代理的建模,以及基于将调查机制和感应技术或情感分析的移动设备基于移动设备进行的新兴数据收集方法,以进行证据收集或验证。成功的候选人应具有高水平的计量经济学,运输经济学和数据分析的动力。申请人在数字学科中应具有强大的背景,例如工程学,应用数学或定量地理位置,并在本科级别具有一级荣誉学位。成功的候选人将接受旅行需求建模方法,运输经济学和计划,数据分析和编码方面的培训。还可以预期,成功的候选人将有机会定期与英国运输部互动,后者将共同赞助这一学生机会。资金以支付家庭学生水平的学费,并通过土木工程系奖学金和通过LISS博士培训计划在伦敦帝国帝国学院的开放竞赛中寻求津贴。感兴趣的候选人应联系Aruna Sivakumar教授(a.sivakumar@imperial.ac.uk),以获取更多信息。
糖尿病是一种以慢性高血糖为特征的代谢性疾病,主要包括1型糖尿病(T1DM)和2型糖尿病(T2DM),后者占糖尿病病例的85%以上(Patil et al.,2023)。随着全球经济发展和生活方式的改变,糖尿病患病率迅速上升(Abdul Basith Khan et al.,2020)。根据国际糖尿病联合会的数据,2019年全球约有4.63亿成年人患有糖尿病,预计到2045年这一数字将上升到7亿(Saeedi et al.,2019)。糖尿病及其并发症不仅严重影响患者的生活质量,也给全球医疗保健系统带来沉重的经济负担。目前,糖尿病治疗主要依靠胰岛素注射、口服降糖药和生活方式干预(Sivakumar等,2021;Prasathkumar等,2022)。但这些传统治疗方法存在一定的局限性。胰岛素注射虽然有效,但患者依从性差,且可能引起低血糖等不良反应(Cernea和Raz,2020)。口服降糖药,包括二甲双胍、磺酰脲类药物和DPP-4抑制剂,可有效控制血糖水平,但长期使用可能导致胃肠不适、体重增加等副作用(Ou等,2015;Yu等,2020)。因此,探索安全有效、副作用小的糖尿病治疗方法已成为迫切的需求。近年来,肠道菌群作为内环境的重要调节系统,在糖尿病发病机制和治疗中受到广泛关注(Afzaal et al.,2022)。肠道菌群是指栖息于人体肠道内的微生物群落,在宿主代谢、免疫调节、营养吸收和维生素合成等过程中发挥重要作用(Gomaa,2020;Dey,2024)。研究发现,糖尿病患者肠道菌群多样性显著降低,有益菌减少,有害菌增多,这种菌群失调与糖尿病的发生发展密切相关(Sechovcová et al.,2024)。例如,糖尿病患者肠道中厚壁菌门与拟杆菌门比例失衡与胰岛素抵抗和低度慢性炎症密切相关(Bajinka等,2023)。调节肠道菌群恢复其平衡可能为糖尿病的防治提供新的策略。有趣的是,许多中药和制剂在调节肠道菌群和改善代谢紊乱方面表现出独特的优势。例如,黄连中的主要活性成分小檗碱通过调节肠道菌群组成和改善胰岛素敏感性和葡萄糖代谢。
1。伯特利·塔雷基(Bethel Tarekegne),丽贝卡·奥尼尔(Rebecca O'Neil),杰里米(Jeremy)Twitchell。“存储作为股票资产。”当前的可持续/可再生能源报告8,149-155(2021年9月)。2。Charlie Vartanian,Matt Paiss,Vilayanur Viswanathan,Jaime Kolln,David Reed。 “审查储能系统的代码和标准”。 当前的可持续/可再生能源8,138-148(2021年9月)。 3。 Patrick Balducci,Kendall Mongird,Mark Weimar。 “了解储能对电源系统的可靠性和弹性应用的价值。” 当前的可持续/可再生能源报告8,131-137(2021年9月)。 4。 Xiang Li,Peiyuan Gao,Yun-Yu Lai,J。DavidBazak,Aaron Hollas,Heng-Yi Lin,Vijayakumar Murugesan,Shuyuan Zhang,Chung-Fu Cheng,Wei-Yao Tung,Yuehting Lai,Yuehting Lai,Yueh-ting Lai,Ruozhu Feng,Yien Yien wang,Wei-wang,Weunwang,wang,W。 “有机铁复合体的对称性设计,用于长循环性有机氧化还原流动电池。” 自然能源6,873-881(2021年9月)。 5。 Ismael A. Rodriguez-Perez,Hee-Jung Chang,Matthew Fayette,Bhuvaneswari M. Sivakumar,Daiwon Choi,Xiaolin Li,David Reed。 “对轻度水解物中Zn – Mno 2电池中氧化还原过程的机理研究。” 材料化学杂志A 9(36),20766-20775(2021年8月)。 6。 Alasdair J. Crawford,Daiwon Choi,Patrick J. Balducci,Venkat R. Subramanian,Vilayanur V. Viswanathan。 “锂离子电池物理学和基于统计的健康模型。” 7。 8。 9。Charlie Vartanian,Matt Paiss,Vilayanur Viswanathan,Jaime Kolln,David Reed。“审查储能系统的代码和标准”。当前的可持续/可再生能源8,138-148(2021年9月)。3。Patrick Balducci,Kendall Mongird,Mark Weimar。“了解储能对电源系统的可靠性和弹性应用的价值。”当前的可持续/可再生能源报告8,131-137(2021年9月)。4。Xiang Li,Peiyuan Gao,Yun-Yu Lai,J。DavidBazak,Aaron Hollas,Heng-Yi Lin,Vijayakumar Murugesan,Shuyuan Zhang,Chung-Fu Cheng,Wei-Yao Tung,Yuehting Lai,Yuehting Lai,Yueh-ting Lai,Ruozhu Feng,Yien Yien wang,Wei-wang,Weunwang,wang,W。“有机铁复合体的对称性设计,用于长循环性有机氧化还原流动电池。”自然能源6,873-881(2021年9月)。5。Ismael A. Rodriguez-Perez,Hee-Jung Chang,Matthew Fayette,Bhuvaneswari M. Sivakumar,Daiwon Choi,Xiaolin Li,David Reed。 “对轻度水解物中Zn – Mno 2电池中氧化还原过程的机理研究。” 材料化学杂志A 9(36),20766-20775(2021年8月)。 6。 Alasdair J. Crawford,Daiwon Choi,Patrick J. Balducci,Venkat R. Subramanian,Vilayanur V. Viswanathan。 “锂离子电池物理学和基于统计的健康模型。” 7。 8。 9。Ismael A. Rodriguez-Perez,Hee-Jung Chang,Matthew Fayette,Bhuvaneswari M. Sivakumar,Daiwon Choi,Xiaolin Li,David Reed。“对轻度水解物中Zn – Mno 2电池中氧化还原过程的机理研究。”材料化学杂志A 9(36),20766-20775(2021年8月)。6。Alasdair J. Crawford,Daiwon Choi,Patrick J. Balducci,Venkat R. Subramanian,Vilayanur V. Viswanathan。“锂离子电池物理学和基于统计的健康模型。”7。8。9。权力来源杂志501,230032(2021年7月)。Hee-Jung Chang,Ismael A. Rodriguez-Perez,Matthew Fayette,Nathan L. Canfield,Huilin Pan,Daiwon Choi,Xiaolin Li,David Reed。“水基粘合剂对轻度水性锌电池中锰二氧化碳阴极的电化学性能的影响。”碳能3:(3),473-481(2021年7月)。Bhuvaneswari M. Sivakumar,Venkateshkumar Prabhakaran,Kaining Duanum,Edwin Thomsen,Brian Berland,Nicholas Gomez,David Reed,Vijayakumar Murugesan。“钒氧化还原流量电池中碳电极的长期结构和化学稳定性。”ACS应用能源材料4:(6),6074-6081(2021年6月)。Xiaowen Zhan,Minyuan M. Li,J. Mark Weller,Vincent L. Sprenkle,Guosheng Li。 “最近用于卤化钠卤化物电池的阴极材料的进度。” 材料14:(12),3260(2021年6月)。 10。 Ruozhu Feng,Xin Zhang,Vijayakumar Murugesan,Aaron Hollas,Ying Chen,Yuyan Shao,Eric Walter,Nadeesha P. N. Wellala,Litao Yan,Kevin M. Rosso,Kevin M. Rosso,Wei Wang。 “可逆的酮氢化和脱氢有机氧化还原流量电池。” 科学372:(6544),836-840(2021年5月)。 11。 J. David Bazak,Allison R. Wong,Kaining Duanmu,Kee Sung Han,David Reed,Vijayakumar Murugesan。 “使用多核NMR和DFT使用水性硫酸的浓度依赖性溶剂化结构和动力学”。 物理化学杂志B 125(19),5089-5099(2021年5月)。 12。 junhua Song,Kang Xu,Nian Liu,David Reed,小姐Li。 13。 14。Xiaowen Zhan,Minyuan M. Li,J.Mark Weller,Vincent L. Sprenkle,Guosheng Li。 “最近用于卤化钠卤化物电池的阴极材料的进度。” 材料14:(12),3260(2021年6月)。 10。 Ruozhu Feng,Xin Zhang,Vijayakumar Murugesan,Aaron Hollas,Ying Chen,Yuyan Shao,Eric Walter,Nadeesha P. N. Wellala,Litao Yan,Kevin M. Rosso,Kevin M. Rosso,Wei Wang。 “可逆的酮氢化和脱氢有机氧化还原流量电池。” 科学372:(6544),836-840(2021年5月)。 11。 J. David Bazak,Allison R. Wong,Kaining Duanmu,Kee Sung Han,David Reed,Vijayakumar Murugesan。 “使用多核NMR和DFT使用水性硫酸的浓度依赖性溶剂化结构和动力学”。 物理化学杂志B 125(19),5089-5099(2021年5月)。 12。 junhua Song,Kang Xu,Nian Liu,David Reed,小姐Li。 13。 14。Mark Weller,Vincent L. Sprenkle,Guosheng Li。“最近用于卤化钠卤化物电池的阴极材料的进度。”材料14:(12),3260(2021年6月)。10。Ruozhu Feng,Xin Zhang,Vijayakumar Murugesan,Aaron Hollas,Ying Chen,Yuyan Shao,Eric Walter,Nadeesha P. N. Wellala,Litao Yan,Kevin M. Rosso,Kevin M. Rosso,Wei Wang。“可逆的酮氢化和脱氢有机氧化还原流量电池。”科学372:(6544),836-840(2021年5月)。11。J. David Bazak,Allison R. Wong,Kaining Duanmu,Kee Sung Han,David Reed,Vijayakumar Murugesan。 “使用多核NMR和DFT使用水性硫酸的浓度依赖性溶剂化结构和动力学”。 物理化学杂志B 125(19),5089-5099(2021年5月)。 12。 junhua Song,Kang Xu,Nian Liu,David Reed,小姐Li。 13。 14。J. David Bazak,Allison R. Wong,Kaining Duanmu,Kee Sung Han,David Reed,Vijayakumar Murugesan。“使用多核NMR和DFT使用水性硫酸的浓度依赖性溶剂化结构和动力学”。物理化学杂志B 125(19),5089-5099(2021年5月)。12。junhua Song,Kang Xu,Nian Liu,David Reed,小姐Li。13。14。“在可充电锌电池复兴中的十字路口。”今天的材料45:191-212(2021年5月)。Nimat Shamim,Edwin C. Thomsen,Vilayanur V. Viswanathan,David Reed,Vincent Sprenkle,Guosheng Li。 “在剃须占空比下评估斑马电池模块。” 材料14:(9),2280(2021年4月)。 Biwei Xiao,Yichao Wang,Sha Tan,Miao Song,Xiang Li,Yuxin Zhang,Feng Lin,Kee Sung Han,Fredrick Omenya,Khalil Amine,Xiao-Qiao-Qinging Yang,Yang,David Reed,David Hu,Yanyan Hu,Gui-liang Xu,Enyyuan liia liia li,XIA,XIA,XIA,XIA,XINIA,XINIA,XINININ kininnin。 “富含锰的层状钠阴极的空缺 - 实现了O3相稳定。” Angewandte Chemie International Edition 60(15),8258-8267(2021年4月)。 15。 di Wu,Xu MA。 “用于控制和尺寸连接网格的能量存储的建模和优化方法:审查。” 当前的可持续/可再生能源报告(2021年3月)。 16。 di Wu,Xu MA,Patrick Balducci,Dhruv Bhatnagar。 “对幕后光伏的经济评估,并在夏威夷群岛上配对电池。” 应用能源286(2021年3月)。 17。 Vijayakumar Murugesan,Zimin Nie,Xin Zhang,Peiyuan Gao,Zihua Zhu,Qian Huang,Litao Yan,David Reed,Wei Wang。 “通过可调溶剂化学的化学反应加速了钒氧化还原流量电池的设计。” 细胞报告物理科学2(2),100323(2021年2月)。 18。 “应力和与界面兼容的红磷阳极,用于高能和耐用的钠离子电池。” ACS Energy Letters 6,547-556(2021年2月)。Nimat Shamim,Edwin C. Thomsen,Vilayanur V. Viswanathan,David Reed,Vincent Sprenkle,Guosheng Li。“在剃须占空比下评估斑马电池模块。”材料14:(9),2280(2021年4月)。Biwei Xiao,Yichao Wang,Sha Tan,Miao Song,Xiang Li,Yuxin Zhang,Feng Lin,Kee Sung Han,Fredrick Omenya,Khalil Amine,Xiao-Qiao-Qinging Yang,Yang,David Reed,David Hu,Yanyan Hu,Gui-liang Xu,Enyyuan liia liia li,XIA,XIA,XIA,XIA,XINIA,XINIA,XINININ kininnin。“富含锰的层状钠阴极的空缺 - 实现了O3相稳定。”Angewandte Chemie International Edition 60(15),8258-8267(2021年4月)。15。di Wu,Xu MA。“用于控制和尺寸连接网格的能量存储的建模和优化方法:审查。”当前的可持续/可再生能源报告(2021年3月)。16。di Wu,Xu MA,Patrick Balducci,Dhruv Bhatnagar。“对幕后光伏的经济评估,并在夏威夷群岛上配对电池。”应用能源286(2021年3月)。17。Vijayakumar Murugesan,Zimin Nie,Xin Zhang,Peiyuan Gao,Zihua Zhu,Qian Huang,Litao Yan,David Reed,Wei Wang。“通过可调溶剂化学的化学反应加速了钒氧化还原流量电池的设计。”细胞报告物理科学2(2),100323(2021年2月)。18。“应力和与界面兼容的红磷阳极,用于高能和耐用的钠离子电池。”ACS Energy Letters 6,547-556(2021年2月)。Xiang Liu, Biwei Xiao, Amine Daali, Xinwei Zhou, Zhou Yu, Xiang Li, Yuzi Liu, Liang Yin, Zhenzhen Yang, Chen Zhao, Likun Zhu, Yang Ren, Lei Cheng, Shabbir Ahmed, Zonghai Chen, Xiaolin Li, Gui-Liang Xu, Khalil胺。19。Minyuan M. Li,Xiaochuan Lu,Xiaowen Zhan,Mark H. Engelhard,Jeffrey F. Bonnett,Evgueni Polikarpov,Keeyoung Jung,David M. Reed,Vincent Sprenkle,Vincent Sprenkle,Guosheng Li。“高温硫磺电池在低温下通过优质的熔融性可润湿性。”化学通信57(1)45-48(2021年1月)。20。Maitri Uppaluri,Akshay Subramaniam,Lubhani Mishra,Vilayanur Viswanathan,Venkat R. Subramanian。“传输模型可以预测锂金属电池中的逆特征而不修饰动力学吗?”电化学学会杂志167,第16号,文章编号160547(2020年12月)。21。Qian Huang,Bin Li,Chaojie Song,Zhengming Jiang,Alison Platt,Khalid Fatih,Christina Bock,Darren Jang,David Reed。“通过稳定的参考电极对全瓦数氧化还原流量电池进行原位可靠性研究。”电化学学会杂志165,第16号,第160541条(2020年12月)。22。Jeremy Twitchell,Jeffrey Taft,Rebecca O'Neil,Angela Becker-Dippmann。2021,PNNL-30172,西北国家实验室,华盛顿州Richland。 嵌入式网格储能的调节含义23。 丽贝卡·奥尼尔(Rebecca O'Neil),杰里米(Jeremy)Twitchell,Danielle Preziuso。 2021,PNNL-30949,西北部国家实验室,华盛顿州里奇兰。 能源公平与环境正义研讨会报告2021,PNNL-30172,西北国家实验室,华盛顿州Richland。嵌入式网格储能的调节含义23。丽贝卡·奥尼尔(Rebecca O'Neil),杰里米(Jeremy)Twitchell,Danielle Preziuso。2021,PNNL-30949,西北部国家实验室,华盛顿州里奇兰。 能源公平与环境正义研讨会报告2021,PNNL-30949,西北部国家实验室,华盛顿州里奇兰。能源公平与环境正义研讨会报告