27。10岁以下的儿童受到2018/19年流感A(H1N1)PDM09在加拿大的流行病的影响更大:2009年流感大流行后可能的队列效应。Skowronski DM,Leir S,De Serres G等。欧元监视2019; 24(15):1900104。28。在2018/19年度流感A(H3N2)在加拿大流行病期间的矛盾进化枝和年龄特异性疫苗的有效性:疫苗(I-REV)的潜在烙印作用。Skowronski DM,Sabaiduc S,Leir S等。欧元监视。2019; 24(46)。 29。 流感疫苗不会增加冠状病毒或其他非影响力呼吸道病毒的风险:加拿大的回顾性分析,2010-11至2016-17。 Skowronski DM,Zou M,Clarke Q等。 临床感染。 2020; 71:2285-2288。 30。 2020年2月,加拿大流感和B病毒早期共同循环期间2019/20疫苗有效性的临时估计。。2019; 24(46)。29。流感疫苗不会增加冠状病毒或其他非影响力呼吸道病毒的风险:加拿大的回顾性分析,2010-11至2016-17。Skowronski DM,Zou M,Clarke Q等。临床感染。2020; 71:2285-2288。30。2020年2月,加拿大流感和B病毒早期共同循环期间2019/20疫苗有效性的临时估计。Skowronski DM,Zou M,Sabaiduc S等。欧元监视。2020; 25(7):2000103。31。流感疫苗的有效性(H3N2)系统发育亚簇和先前的疫苗接种历史:2016-17和2017-18在加拿大的流行病。Skowronski DM,Leir S,Sabaiduc S等。J Infect Dis 2022; 225:1387-98。32。在加拿大延迟的2021/22流行期间,对A(H3N2)的流感疫苗有效性。
PEI Z,Deng K,Xu C,ZhangS。减数分裂阻滞和恢复卵母细胞发育和成熟的分子调节机制。再生生物内分泌。2023年10月2日; 21(1):90。Rabbani M,Zheng X,Manske GL,Vargo A,Shami AN,Li JZ,Hammoud SS。解码精子发生程序:转录组分析的新见解。Annu Rev Genet。2022 11月30日; 56:339-368。Trost N,Mbengue N,Kaessmann H.哺乳动物精子发生的分子进化。细胞开发。2023年9月; 175:203865。Coxir SA,Costa GMJ,Santos CFD,Alvarenga Rlls,Lacerda SMDSN。从体内到体外:探索人配子发生的关键分子和细胞方面。嗡嗡声单元。2023 Jul; 36(4):1283-1311。Vargas LN,Silveira MM,Franco MM。表观遗传重编程和体细胞核转移。方法mol biol。2023; 2647:37-58。McCarrey Jr。表观遗传启动作为精子干细胞命运预先确定的机制。 雄科。 2023 Jul; 11(5):918-926。 Krajnik K,Mietkiewska K,Skowronska A,Kordowitzki P,Skowronski MT。 女性的卵子发生:从分子调节途径和母体年龄到干细胞。 int J Mol Sci。 2023 Apr 6; 24(7):6837。 Hermann BP,Oatley JM。 简介:为什么以及如何研究精子发生和精子干细胞。 方法mol biol。 2023; 2656:1-6。 EUR UROL重点。 2023 JAN; 9(1):46-48。 细胞开发。 2023年9月; 175:203865。McCarrey Jr。表观遗传启动作为精子干细胞命运预先确定的机制。雄科。2023 Jul; 11(5):918-926。Krajnik K,Mietkiewska K,Skowronska A,Kordowitzki P,Skowronski MT。女性的卵子发生:从分子调节途径和母体年龄到干细胞。int J Mol Sci。2023 Apr 6; 24(7):6837。Hermann BP,Oatley JM。简介:为什么以及如何研究精子发生和精子干细胞。方法mol biol。2023; 2656:1-6。EUR UROL重点。 2023 JAN; 9(1):46-48。 细胞开发。 2023年9月; 175:203865。EUR UROL重点。2023 JAN; 9(1):46-48。细胞开发。2023年9月; 175:203865。Ramsoomair CK,Alver CG,Flannigan R,Ramasamy R,Agarwal A.精子干细胞和体外精子生成:我们离碎屑上的人睾丸有多远?Trost N,Mbengue N,Kaessmann H.哺乳动物精子发生的分子进化。Davis GM,Hipwell H,Boag PR。 秀丽隐杆线虫中卵子发生。 性爱。 2023; 17(2-3):73-83。 Irie N,Lee SM,Lorenzi V,Xu H等。 DMRT1调节人类种系承诺。 NAT细胞生物。 2023年10月; 25(10):1439-1452。 Jabari A,Gholami K,Khadivi F等。 使用琼脂糖和层粘连蛋白的杂化水凝胶,在体外完全分化了人类精子干细胞与形态精子。 Int J Biol Macromol。 2023 Apr 30; 235:123801。 Robinson M,Haegert A,Li YY,Morova T,Zhang Ayy,Witherspoon L,Hach F,Willerth SM,FlanniganR。与人诱导的多能干细胞的周围细胞类肌动物样细胞的分化。 Adv Biol(Weinh)。 2023 Jul; 7(7):E2200322。 Peng YJ,Tang XT,Shu HS,Dong W,Shao H,Zhou Bo。 Sertoli细胞是精子发生的干细胞因子的来源。 开发。 2023 3月15日; 150(6):DEV200706。 Seita Y,Cheng K,McCarrey JR等。 使用诱导的多能干细胞有效地产生果果果果果原始生殖细胞样细胞。 Elife。 2023 JAN 31; 12:E82263。 seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。 方法mol biol。 2023; 2656:145-159。Davis GM,Hipwell H,Boag PR。卵子发生。性爱。2023; 17(2-3):73-83。Irie N,Lee SM,Lorenzi V,Xu H等。DMRT1调节人类种系承诺。NAT细胞生物。 2023年10月; 25(10):1439-1452。 Jabari A,Gholami K,Khadivi F等。 使用琼脂糖和层粘连蛋白的杂化水凝胶,在体外完全分化了人类精子干细胞与形态精子。 Int J Biol Macromol。 2023 Apr 30; 235:123801。 Robinson M,Haegert A,Li YY,Morova T,Zhang Ayy,Witherspoon L,Hach F,Willerth SM,FlanniganR。与人诱导的多能干细胞的周围细胞类肌动物样细胞的分化。 Adv Biol(Weinh)。 2023 Jul; 7(7):E2200322。 Peng YJ,Tang XT,Shu HS,Dong W,Shao H,Zhou Bo。 Sertoli细胞是精子发生的干细胞因子的来源。 开发。 2023 3月15日; 150(6):DEV200706。 Seita Y,Cheng K,McCarrey JR等。 使用诱导的多能干细胞有效地产生果果果果果原始生殖细胞样细胞。 Elife。 2023 JAN 31; 12:E82263。 seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。 方法mol biol。 2023; 2656:145-159。NAT细胞生物。2023年10月; 25(10):1439-1452。Jabari A,Gholami K,Khadivi F等。 使用琼脂糖和层粘连蛋白的杂化水凝胶,在体外完全分化了人类精子干细胞与形态精子。 Int J Biol Macromol。 2023 Apr 30; 235:123801。 Robinson M,Haegert A,Li YY,Morova T,Zhang Ayy,Witherspoon L,Hach F,Willerth SM,FlanniganR。与人诱导的多能干细胞的周围细胞类肌动物样细胞的分化。 Adv Biol(Weinh)。 2023 Jul; 7(7):E2200322。 Peng YJ,Tang XT,Shu HS,Dong W,Shao H,Zhou Bo。 Sertoli细胞是精子发生的干细胞因子的来源。 开发。 2023 3月15日; 150(6):DEV200706。 Seita Y,Cheng K,McCarrey JR等。 使用诱导的多能干细胞有效地产生果果果果果原始生殖细胞样细胞。 Elife。 2023 JAN 31; 12:E82263。 seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。 方法mol biol。 2023; 2656:145-159。Jabari A,Gholami K,Khadivi F等。使用琼脂糖和层粘连蛋白的杂化水凝胶,在体外完全分化了人类精子干细胞与形态精子。Int J Biol Macromol。2023 Apr 30; 235:123801。Robinson M,Haegert A,Li YY,Morova T,Zhang Ayy,Witherspoon L,Hach F,Willerth SM,FlanniganR。与人诱导的多能干细胞的周围细胞类肌动物样细胞的分化。Adv Biol(Weinh)。2023 Jul; 7(7):E2200322。Peng YJ,Tang XT,Shu HS,Dong W,Shao H,Zhou Bo。 Sertoli细胞是精子发生的干细胞因子的来源。 开发。 2023 3月15日; 150(6):DEV200706。 Seita Y,Cheng K,McCarrey JR等。 使用诱导的多能干细胞有效地产生果果果果果原始生殖细胞样细胞。 Elife。 2023 JAN 31; 12:E82263。 seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。 方法mol biol。 2023; 2656:145-159。Peng YJ,Tang XT,Shu HS,Dong W,Shao H,Zhou Bo。Sertoli细胞是精子发生的干细胞因子的来源。开发。2023 3月15日; 150(6):DEV200706。Seita Y,Cheng K,McCarrey JR等。 使用诱导的多能干细胞有效地产生果果果果果原始生殖细胞样细胞。 Elife。 2023 JAN 31; 12:E82263。 seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。 方法mol biol。 2023; 2656:145-159。Seita Y,Cheng K,McCarrey JR等。使用诱导的多能干细胞有效地产生果果果果果原始生殖细胞样细胞。Elife。 2023 JAN 31; 12:E82263。 seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。 方法mol biol。 2023; 2656:145-159。Elife。2023 JAN 31; 12:E82263。seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。方法mol biol。2023; 2656:145-159。Czukiewska SM,Fan X,Mulder AA,Van der Helm T等。 人类原始卵泡形成过程中的细胞 - 细胞相互作用。 生命科学联盟。 2023 8月29日; 6(11):E202301926。Czukiewska SM,Fan X,Mulder AA,Van der Helm T等。人类原始卵泡形成过程中的细胞 - 细胞相互作用。生命科学联盟。2023 8月29日; 6(11):E202301926。
参考文献 1. Polack FP、Thomas SJ、Kitchin N 等人。BNT162b2 mRNA Covid-19 疫苗的安全性和有效性。N Engl J Med 。2020 年 12 月 31 日;383(27):2603-2615。doi:10.1056/NEJMoa2034577 2. Sadoff J、Gray G、Vandebosch A 等人。单剂量 Ad26.COV2.S Covid-19 疫苗的安全性和有效性。N Engl J Med 。2021 年 6 月 10 日;384(23):2187-2201。doi:10.1056/NEJMoa2101544 3. Marra AR、Kobayashi T、Callado GY 等人。 COVID-19 疫苗在预防新冠后遗症中的有效性:最新研究的系统文献综述和荟萃分析。Antimicrob Steward Healthc Epidemiol。2023;3(1):e168。doi:10.1017/ash.2023.447 4. Watson OJ、Barnsley G、Toor J、Hogan AB、Winskill P、Ghani AC。COVID-19 疫苗接种第一年对全球的影响:一项数学建模研究。Lancet Infect Dis。2022 年 9 月;22(9):1293-1302。doi:10.1016/s1473-3099(22)00320-6 5. Mathieu E、Ritchie H、Rodés-Guirao L 等人。冠状病毒 (COVID-19) 疫苗接种。访问时间:2024 年 12 月 17 日。https://ourworldindata.org/covid-vaccinations 6. Caffrey AR、Appaneal HJ、Lopes VV 等人。BNT162b2 XBB 疫苗在美国退伍军人事务医疗系统中的有效性。Nat Commun。2024 年 11 月 2 日;15(1):9490。doi:10.1038/s41467-024-53842-w 7. 美国退伍军人事务部。退伍军人事务部 COVID-19 国家摘要。访问时间:2024 年 1 月 31 日。https://www.accesstocare.va.gov/Healthcare/COVID19NationalSummary 8. 美国退伍军人事务部。VA 的 COVID-19 疫苗。访问时间:2024 年 1 月 31 日。https://www.va.gov/health-care/covid-19-vaccine/ 9. CDC。疫苗接种趋势。访问时间:2024 年 12 月 13 日。https://www.cdc.gov/respiratory-viruses/data/vaccination-trends.html#cdc_data_surveillance_section_3-covid-19-vaccine 10. Caffrey AA, HJ。Lopes, VV。Puzniak, L. Zasowski, EJ。Jodar, L. LaPlante, KL。McLaughlin, JM。BNT162b2 XBB 疫苗在美国退伍军人事务医疗系统中的有效性。自然通讯。2024 年 11 月 2 日;15(1):9490。11. Foppa IM, Haber M, Ferdinands JM, Shay DK。用于流感疫苗有效性研究的案例测试阴性设计。疫苗。2013 年 6 月 26 日;31(30):3104-9。doi:10.1016/j.vaccine.2013.04.026 12. De Serres G、Skowronski DM、Wu XW、Ambrose CS。测试阴性设计:与随机安慰剂对照临床试验的黄金标准相比,疫苗效力估计的有效性、准确性和精确度。欧洲监测。2013 年 9 月 12 日;18(37)doi:10.2807/1560-7917.es2013.18.37.20585 13. Jackson ML、Phillips CH、Benoit J 等人。选择偏差对测试阴性研究中疫苗有效性估计的影响。疫苗。 2018 年 1 月 29 日;36(5):751-757。doi:10.1016/j.vaccine.2017.12.022 14. Tartof SY、Slezak JM、Frankland TB 等人。BNT162b2 XBB 疫苗对抗 COVID-19 的估计有效性。JAMA Intern Med。2024 年 8 月 1 日;184(8):932-940。doi:10.1001/jamainternmed.2024.1640 15. Weinberger DM、Rose L、Rentsch C 等人。与 COVID-19 大流行第一年美国总人口相比,退伍军人事务卫生系统患者的超额死亡率。JAMA Netw Open。2023 年 5 月 1 日;6(5):e2312140。doi:10.1001/jamanetworkopen.2023.12140 16. CDC。COVID 数据追踪器。COVID-NET 实验室确诊的 COVID-19 住院病例。2024 年 12 月 18 日访问。https://covid.cdc.gov/covid-data-tracker/#covidnet-hospitalization-network 17. CDC。呼吸道病毒住院监测网络 (RESP-NET) | RESP-NET | CDC。RESP-NET 交互式仪表板。访问日期:2024 年 12 月 18 日。https://www.cdc.gov/resp-net/dashboard/index.html 18. Kitchen C、Hatef E、Chang HY、Weiner JP、Kharrazi H。评估地区贫困指数与 COVID-19 患病率之间的关联:美国城乡管辖区的对比。AIMS 公共卫生。2021;8(3):519-530。doi:10.3934/publichealth.2021042 19. Cheng D、DuMontier C、Yildirim C 等人。更新和验证美国退伍军人事务部虚弱指数:从 ICD-9 过渡到 ICD-10。J Gerontol A Biol Sci Med Sci。2021 年 6 月 14 日;76(7):1318-1325。 doi:10.1093/gerona/glab071