专业隶属关系和会员SL。编号社会持续时间1。Isagb,新德里寿命2。 Socdab,新德里一生。 会议/研讨会/研讨会等。 参加:08奖项/奖学金SL。 编号 奖项/奖学金1年。 最佳海报奖,印度蛋白质组学学会2019年2。 ISAGB-2021 在全国会议上获得第二奖奖项Isagb,新德里寿命2。Socdab,新德里一生。会议/研讨会/研讨会等。参加:08奖项/奖学金SL。编号奖项/奖学金1年。最佳海报奖,印度蛋白质组学学会2019年2。ISAGB-2021 在全国会议上获得第二奖奖项ISAGB-2021
合成致死 (SL) 是指一种遗传相互作用,其中两个基因同时受到干扰会导致细胞或生物体死亡,而当其中一个基因发生改变时,细胞或生物体仍能保持活力。对这些基因对的实验探索和计算生物学中的预测模型有助于我们理解癌症生物学和开发癌症疗法。我们广泛回顾了合成致死基因对研究中的实验技术、公共数据源和预测模型,并在此详细介绍了各种预测模型的生物学假设、实验数据、统计模型和计算方案,推测它们对基于个体样本和基于种群的合成致死相互作用的影响,讨论了现有 SL 数据和模型的优缺点,并强调了 SL 发现中的潜在研究方向。
截至2021年1月,最近出现的严重急性 - 病毒综合症2导致全球超过200万人死亡和超过1亿次感染(1)。sars-cov-2是冠状病毒家族的成员。呼吸道感染可能导致疾病的疾病,即covid-19。COVID-19的更严重的病例导致由于急性呼吸窘迫综合征和对肺泡腔的损害而导致死亡(2)。目前,对于Covid-19患者,几乎没有治疗选择。抗病毒RNA依赖性聚合酶抑制剂REMDESIVIR降低了COVID-19的住院时间和死亡(3)。此外,类固醇dexame-thasone也已被批准用于严重的Covid-19(4)。到目前为止,已经开发了许多有效的疫苗(5,6)。尽管有这些进展,但仍需要额外的抗病毒治疗剂来治疗未来的流行感染。目前正在进行的全球努力正在进行中,以识别和开发新的抗病毒和抗炎疗法,以减少相关的医院和死亡。
摘要:采用计算和实验相结合的方法了解自限制 (SL) 和化学气相蚀刻 (CVE) 反应之间的竞争,以设计原子层蚀刻 (ALE) 工艺。ALE 工艺中的脉冲必须是自限制的;即,反应应在足够的脉冲时间后达到饱和。通过使用密度泛函理论 (DFT) 比较相应的 SL 和 CVE 反应的反应自由能,可以预测有利于 SL 或 CVE 反应的温度和压力条件。以 TiO 2 暴露于 HF 气体时的蚀刻为测试案例。模拟表明,当 TiO 2 暴露于压力为 0.2 Torr 的反应物 HF 时,在高达 87 °C (360 K) 的温度下,SL 反应优先去除 0.01 Torr 下的 H 2 O 并使表面氟化。在较高温度下,根据受动力学活化能垒影响的反应 TiO 2 + HF → TiF 4 + H 2 O,CVE 会持续去除 TiO 2。将原位傅里叶变换红外 (FTIR) 光谱和四极杆质谱 (QMS) 的实验结果与理论预测进行了比较。与理论高度一致,FTIR 光谱研究表明自发蚀刻 (CVE) 在温度约为 80 − 90 °C 时开始。此外,QMS 分析观察到 TiF 4 和 H 2 O 作为蚀刻产物,进一步验证了计算结果。计算还预测反应气体压力的增加会增强高温下的蚀刻。这种理论方法的计算成本低,可以快速筛选蚀刻试剂并预测反应在 SL 或 CVE 范围内的温度/压力窗口。
非确定性策略是指在给定博弈历史的情况下,分配一组可能采取的行动(或协议或计划)的策略,这些行动都应该是获胜的。一个重要的问题是改进此类策略。例如,给定一个仅允许安全执行的非确定性策略,对其进行改进,最终达到期望的状态。我们表明,涉及策略改进的战略问题可以在战略逻辑 (SL) 框架中得到优雅的解决,这是一种非常富有表现力的推理战略能力的逻辑。具体来说,我们引入了具有非确定性策略的 SL 扩展和一个表达策略改进的运算符。我们表明,与标准 SL 相比,模型检查此逻辑可以在不增加计算成本的情况下完成,并且可用于解决各种问题,例如最大允许策略或最大允许纳什均衡的合成。
生物信息学彻底改变了现代生物学,主要是随着基因组测序的出现而发生的,基因组测序是确定生物体基因组完整 DNA 序列的过程,包括其所有基因和非编码区域 [4];蛋白质组学是对蛋白质的大规模研究,包括其结构、功能和相互作用,旨在理解蛋白质在生物过程中的作用以及它们如何有助于生物体的整体功能,以及其他分子生物学技术 [5]。在航空航天领域,生物信息学也发挥着至关重要的作用。美国联邦航空管理局 (FAA) 使用生物信息学和计算工具来分析航空医学相关数据,例如航空事故调查和人类受试者研究。此外,FAA 对生物信息学的使用有助于评估各种因素对飞行员表现的影响,最终提高航空安全和绩效。
摘要该研究的目的是评估选定除草剂的影响:圆形柔性Ogrod,Sprinter 350 SL和ChwastoxTrio®540SL对自然环境。使用毒理学研究确定除草剂制剂对测试生物的生存和生命功能的影响。选择了各种分类群进行毒性测试:革兰氏阳性细菌,革兰氏阴性细菌,生物发光细菌Aliivibrio Fischeri,Taceans taceans daceans daphnia magna和Chironomus sp。幼虫。测定了除草剂对选定微生物的最小抑制浓度(MIC),以及有效浓度(EC 50)以抑制Aliivibrio fischeri的生物发光,并用急性毒性测试对Magna和Chirironomus Sp。进行了急性毒性测试,并确定了(lc)的浓度。在急性测试中,通过统计方法计算LC 50浓度。所有测试的除草剂均属于剧毒化合物。Sprinter 350 SL显示出最高程度的毒性,而Roundup Flex Ogrod和ChwastoxTrio®540SL则显示出相似的有害性。测试的除草剂配方显示,使用水甲甲壳类动物和chironomus幼虫不同程度的毒性。水坝在急性测试中更敏感。基于进行的研究,发现对毒性的常规和详细控制以及除草剂对环境的影响是必要的。
14 Engerman, SL, & Gallman, RE (Eds.) (1996)。剑桥美国经济史:第 2 卷,第 7 章和第 16 章。剑桥大学出版社。 15 Engerman, SL, & Gallman, RE (Eds.) (1996)。剑桥美国经济史:第 2 卷,第 11 章。剑桥大学出版社。 16 美国。人口普查局。(1975)。美国历史统计数据,殖民时期至 1970 年(第 93 号)。美国商务部,人口普查局。
据称,水稻类胡萝卜素裂解双加氧酶 OsZAS 可产生一种促进植物生长的脱辅基类胡萝卜素——扎西酮。zas 突变株系表现出丛枝菌根 (AM) 定植减少,但这种行为背后的机制尚不清楚。在这里,我们研究了 OsZAS 和外源扎西酮处理如何调节菌根形成。微摩尔外源供应扎西酮可挽救根部生长,但无法修复 zas 突变株的菌根缺陷,甚至可降低野生型和 zas 基因型的菌根形成。在接种 AM 真菌后 7 天,zas 株系的独脚金内酯 (SL) 水平并未像野生型植物那样出现增加。此外,用合成的 SL 类似物 GR24 进行外源处理可挽救 zas 突变菌根表型,表明 zas 较低的 AM 定殖率是由相互作用早期阶段 SL 缺乏引起的,并表明在此阶段需要 OsZAS 活性来诱导 SL 产生,这可能是由 Dwarf14-Like (D14L) 信号通路介导的。OsZAS 在含丛枝细胞中表达,OsPT11-prom::OsZAS 转基因株系(其中 OsZAS 表达由在丛枝细胞中活跃的 OsPT11 启动子驱动)与野生型相比表现出更高的菌根化。总的来说,我们的结果表明,在植物体内对 OsZAS 活性进行基因操作会对 AM 共生产生与外源 zaxinone 处理不同的影响,并证明 OsZAS 影响 AM 定植的程度,充当涉及 SL 的调控网络的组成部分。