获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
摘要:同时定位和映射(SLAM)对于移动机器人技术至关重要。大多数vi-sual SLAM系统都假定环境是静态的。但是,在现实生活中,有许多动态对象,会影响这些系统的准确性和鲁棒性。为了改善视觉大满贯系统的表现,这项研究提出了基于定向的快速和旋转简短(ORB)-Slam3框架的动态视觉大满贯(SEG-SLAM)系统,您只能看一次(YOLO)V5深学习方法。首先,基于ORB-SLAM3框架,Yolov5深学习方法用于构建用于目标检测和语义分割的融合模块。此模块可以有效地识别并提取明显和潜在动态对象的先验信息。第二,使用先前的信息,深度信息和表现几何方法为不同的动态对象开发了差异化的动态特征拒绝策略。因此,提高了SEG-SLAM系统的定位和映射准确性。最后,拒绝结果与深度信息融合在一起,并使用点云库构建了无动态对象的静态密集映射。使用公共TUM数据集和现实世界情景评估SEG-SLAM系统。所提出的方法比当前动态视觉大满贯算法更准确,更健壮。