增材制造的一个基本步骤是切片。切片是将 3D 网格转换为一组包含构建对象所需所有路径的图层。切片过程通常被视为连续增材制造工作流程中的一个步骤:在 CAD 中设计一个对象,切片,然后将 G 代码发送到增材制造系统进行构建。虽然成功了,但此工作流程存在局限性,例如利用传感器反馈来改变路径。为了解决局限性并更好地利用工业 4.0 革命带来的机遇,橡树岭国家实验室的研究人员开发了一种新的切片机 ORNL Slicer 2.0。Slicer 2.0 的开发采用了“按需”切片的概念,切片机在对象构建中发挥了更积极的作用。在本文中,我们描述了这种新方法的基本设计理念以及 Slicer 2.0 框架。
• 尽管有许多创新,但在针对患者量身定制的与 TBI 相关的神经和认知障碍相关的结构和功能基础的表征方面取得的进展仍然不令人满意,并且认知功能障碍的神经生理标志物与 TBI 结构损伤之间的关系尚未得到令人满意的阐明• 3D Slicer 为探索和量化 TBI 提供了一套强大且无与伦比的工具
切片程序 • 使用不同的切片程序准备要打印的 3D 模型。这些是 Cura、PrusaSlicer、LycheeSlicer 和 ChiTuBox。 • 探索各种切片设置及其如何影响打印过程,例如层高、壁数、填充(密度、类型/图案)、曝光时间、打印方向、支撑结构(正常、树/有机)等。 • 理解并使用切片过程的步骤。 1. 将 3D 文件导入切片软件 2. 调整切片设置并定位 3D 模型 3. 通过将 3D 模型切片成层来生成刀具路径。 4. 预览切片层以确保准确性并识别任何潜在问题。 5. 以与 3D 打印机兼容的适当文件格式(例如 G 代码)导出切片模型。 6. 将切片文件传输到 3D 打印机进行打印。
Cricut的介绍:这个90分钟的课程将向您介绍我们的手工艺品 - 非常适合切纸,卡片和乙烯基或用不可能的墨水绘画。您将探索Cricut Design应用程序,并学习如何选择和创建一个基本项目以发送到Cricut。成年和青少年14岁以上。最多每类2个参与。时间:1月25日,星期六,下午3:30至下午5点介绍到3D打印:这90分钟的课程将向您介绍我们的Prusa 3D打印机。您将选择一个基本项目,并学习如何将其导入到Prusa Slicer应用程序中。进入切片机后,您将进一步了解要修改哪些设置,以确保成功打印以及如何将项目传输到3D打印机。成年和青少年14岁以上。每班最多2个参与者。时间:2月8日,星期六,下午3:30至下午5点免费提供这两个程序,并需要预注册。请访问In-for-ford Desk或致电905-985-7686 X1010注册。请访问In-for-ford Desk或致电905-985-7686 X1010注册。
简介本手册的目的是介绍对成像数据的可靠和准确的神经解剖学分割的程序。这些过程使用3D Slicer软件平台,其中已经开发了特定的分割模块。该模块基于基于MRI的体积形态学或体积的创始人(Caviness。等,1999)。 体积形态计量学始于1987年的形态分析中心(CMA)马萨诸塞州综合医院(MGH),后来用于验证自由度自动化体积方法学(Fischl等,2002,2004)。 原始的基于MRI的体积分析的CMA方法使用了一个名为CardViews的自定义设计的软件平台。 为卡片视图开发的工具和程序,这些工具和过程融合了半自动化和手动编辑,已作为特定的神经分组模块改编为3D切片机环境。 该模块设计为与本手册中描述的程序一起使用,以执行皮层大脑结构的半自动化和手动编辑。 基于MRI的体积分割的神经解剖学和计算原理术语分割一词在神经解剖学和基于MRI的计算处理中具有不同的含义。 分割通常是构成构成感兴趣区域(ROI)的一组元素(例如细胞或体素)的划分,并分配了识别标签向该区域。 在神经解剖学中,分割涉及直接可视化大脑区域的描述和鉴定,这些区域使用结构性的生物学标准标记。等,1999)。体积形态计量学始于1987年的形态分析中心(CMA)马萨诸塞州综合医院(MGH),后来用于验证自由度自动化体积方法学(Fischl等,2002,2004)。原始的基于MRI的体积分析的CMA方法使用了一个名为CardViews的自定义设计的软件平台。为卡片视图开发的工具和程序,这些工具和过程融合了半自动化和手动编辑,已作为特定的神经分组模块改编为3D切片机环境。该模块设计为与本手册中描述的程序一起使用,以执行皮层大脑结构的半自动化和手动编辑。基于MRI的体积分割的神经解剖学和计算原理术语分割一词在神经解剖学和基于MRI的计算处理中具有不同的含义。分割通常是构成构成感兴趣区域(ROI)的一组元素(例如细胞或体素)的划分,并分配了识别标签向该区域。在神经解剖学中,分割涉及直接可视化大脑区域的描述和鉴定,这些区域使用结构性的生物学标准标记。相比之下,在MRI分析中,使用与成像相关的标准在计算机生成的图像上对大脑结构的描述和鉴定进行了识别。基于MRI的分割的最终目标是将图像切入与神经解剖结构相对应的体素的识别分组。
图 1:(a) 纳米线的 SEM(左)和纳米线结构示意图(右)。由于 QD 嵌入纳米线内,因此在 SEM 图像中不可见。(b) 实验装置示意图。图像的测量部分(最右边的两个部分,在图中也标记为“测量”)显示了互相关测量的方案。绿色和粉色箭头分别表示用于进行自相关和光谱仪测量的光纤重新连接。对于带上激发,切片机被绕过,来自激光器的光直接通过纳米线发送到低温恒温器。(c) 在共振激发下从纳米线反射的泵浦激光的数值模拟“花”状轮廓。
(绝缘体和开关) 硅晶锭:是由直径为 8 至 12 英寸、长度约为 12 至 24 英寸的硅晶体组成的棒。 切片机:这些圆柱体被切成薄片 毛坯晶圆:这些圆柱体是高度抛光的晶圆,厚度不到四十分之一英寸。 20 到 40 个处理步骤:晶圆要经过多步光刻工艺,电路所需的每个掩模都要重复一次。每个掩模定义组成完整集成电路的晶体管、电容器、电阻器或连接器的不同部分,并定义制造器件的每个层的电路图案。 图案化晶圆:晶圆上的图案与掩模的精确设计一致
摘要背景:利用低强度电压源(<10 V)产生的非电离电场来控制恶性肿瘤生长作为一种癌症治疗方式的潜力越来越大。在肿瘤内或肿瘤附近植入多个电极施加低强度电场的方法被称为肿瘤内调制疗法(IMT)。目的:本研究探讨了先前建立的 IMT 优化算法的进展,以及针对特定患者 IMT 的定制治疗计划系统的开发。通过在脑模型上实施完整的优化流程,包括机器人电极植入、术后成像和治疗刺激,证明了治疗计划系统的实用性。方法:3D Slicer 中的集成计划流程从导入和分割患者磁共振图像(MRI)或计算机断层扫描(CT)图像开始。分割过程是手动的,然后是半自动平滑步骤,通过应用选定的过滤器可以平滑和简化分割的大脑和肿瘤网格体积。通过选择插入和尖端坐标,在患者 MRI 或 CT 上手动规划电极轨迹,以选择所选电极数量的插入和尖端坐标。然后可以使用自定义的半自动 IMT 优化算法优化电极尖端位置和刺激参数(相移和电压),其中用户可以选择处方电场、电压幅度限制、组织电特性、附近危及的器官、优化参数(电极尖端位置、单个接触相移和电压)、所需的场覆盖百分比和场适形度优化。显示优化结果表,并将得到的电场可视化为叠加在 MR 或 CT 图像上的场图,并显示大脑、肿瘤和电极的 3D 渲染。优化后的电极坐标被传输到机器人电极植入软件,以便规划电极并随后按照所需轨迹植入。结果:开发了一种 IMT 治疗计划系统,该系统结合了患者特定的 MRI 或 CT、分割、体积平滑、电极轨迹规划、电极尖端定位和刺激参数优化以及结果可视化。所有以前在不同软件平台上运行的手动管道步骤都合并到一个半自动化的基于 3D Slicer 的用户界面中。在术前计划、机器人电极植入和术后治疗计划中,对整个系统实施的脑模型验证均取得成功,以根据患者情况调整刺激参数
内容焦点 - 学生将学到什么?(内容技能集)使用索赔,证据和推理模型,学生将比较和对比有机与常规生产的食物,以发现每种农场生产风格的差异和相似之处。学生将确定植物生产的农场实践和为消费者收获的安全产品。0101.33识别并辩论与农业行业中与生物技术使用相关的问题。0101.37讨论食品标签对消费者的重要性。0101.45比较和对比各种食品标签。0111.48进行感官分析实验,以实现食物和食物添加剂和增强剂的气味,味道和质地0111.51进行食品产品采样和消费者评估活动。0111.58展示了有机食品的知识0111.64确定有机食品材料和资源的特征 - 您需要在课程前组装和准备什么?材料:1个有机苹果和1种相同品种的常规苹果或苹果切片机切菜板口味测试用品: