评估结果为 0% 不及格或 50% 及格。每次测验持续一小时,在项目提交日期后的讲座时间段内进行。必须参加测验 1、2 和 3。
第 1 章 战术数据链简介 背景 第 2 章 了解 Link 16 第 1 部分 Link 16 简介 第 A 节 概述 第 B 节 Link 16 J 系列消息 第 C 节 Link 16 架构概述 第 D 节 Link 16 架构的功能 第 E 节 附加功能摘要 第 2 部分 终端和接口 第 A 节 Link 16 数据终端 第 B 节 语音传输和接收 第 C 节 JTIDS TACAN 端口接口 第 3 部分 时分多址架构 第 A 节 TDMA 和 Link 16 网络 第 B 节 Link 16 终端消息类型 第 C 节 时隙内 第 4 部分 Link 16 频谱运营商 第 A 节 Link 16 频率 第 B 节 干扰保护功能 第 C 节 时隙占空比 第 5 部分 Link 16 网络的功能和特性 第 A 节 参与组 第 B 节 时隙分配 第 C 节 网络角色 第 D 节 网络入口 第 E 节 精确参与者定位和识别 第 F 节 中继 第 G 节 通信安全 第 H 节 多网 第 I 节 范围扩展技术
1) 4 月 3 日的“项目回顾”我刚刚为下一个定期会议预留了一个演讲时段——4 月 3 日星期三上午 10:00 至下午 12:00(具体时间段 IBD)。星期二的地点是会议室,几乎就在 Frank 办公室套房的正对面,我们今天早些时候在那里见面。这通常会向负责 NEPA 和历史保护合规性的公园工作人员进行 20 分钟的演讲(包括可怕的 A/V 材料、讲义等)。正如 Frank 提到的,这也是高级公园工作人员讨论概念并做出反应的常用方式。Rich 和他在 Fort Mason Center 的同事非常熟悉这种工作方式。
1) 4 月 3 日的 Pa~“项目回顾”我刚刚为下一个定期会议(星期三)预订了一个演讲时段。4 月 3 日上午 10:00 至下午 12:00(具体时间段 IBD)。星期二的地点是会议室,几乎就在 Frank 办公室套房的正对面,我们今天早些时候在那里见面。这通常会向负责 NEPA 和历史保护合规性的公园工作人员进行 20 分钟的演讲(包括可怕的 A/V 内容、讲义等)。正如 Frank 提到的,这也是高级公园工作人员讨论概念并做出反应的常用方式。Rich 和他在 Fort Mason Center 的同事非常熟悉这种工作方式。
第 1 章 战术数据链简介 背景 第 2 章 了解 Link 16 第 1 部分 Link 16 简介 第 A 节 概述 第 B 节 Link 16 J 系列消息 第 C 节 Link 16 架构概述 第 D 节 Link 16 架构的功能 第 E 节 附加功能摘要 第 2 部分 终端和接口 第 A 节 Link 16 数据终端 第 B 节 语音传输和接收 第 C 节 JTIDS TACAN 端口接口 第 3 部分 时分多址架构 第 A 节 TDMA 和 Link 16 网络 第 B 节 Link 16 终端消息类型 第 C 节 时隙内 第 4 部分 Link 16 频谱运营商 第 A 节 Link 16 频率 第 B 节 干扰保护功能 第 C 节 时隙占空比 第 5 部分 Link 16 网络的功能和特性 第 A 节 参与组 第 B 节 时隙分配 第 C 节 网络角色 第 D 节 网络入口 第 E 节 精确参与者定位和识别 第 F 节 中继 第 G 节 通信安全 第 H 节 多网 第 I 节 范围扩展技术
第 1 章 战术数据链简介 背景 第 2 章 了解 Link 16 第 1 部分 Link 16 简介 第 A 节 概述 第 B 节 Link 16 J 系列消息 第 C 节 Link 16 架构概述 第 D 节 Link 16 架构的功能 第 E 节 附加功能摘要 第 2 部分 终端和接口 第 A 节 Link 16 数据终端 第 B 节 语音传输和接收 第 C 节 JTIDS TACAN 端口接口 第 3 部分 时分多址架构 第 A 节 TDMA 和 Link 16 网络 第 B 节 Link 16 终端消息类型 第 C 节 时隙内 第 4 部分 Link 16 频谱运营商 第 A 节 Link 16 频率 第 B 节 干扰保护功能 第 C 节 时隙占空比 第 5 部分 Link 16 网络的功能和特性 第 A 节 参与组 第 B 节 时隙分配 第 C 节 网络角色 第 D 节 网络入口 第 E 节 精确参与者定位和识别 第 F 节 中继 第 G 节 通信安全 第 H 节 多网 第 I 节 范围扩展技术
第 1 章 战术数据链简介 背景 第 2 章 了解 Link 16 第 1 部分 Link 16 简介 第 A 节 概述 第 B 节 Link 16 J 系列消息 第 C 节 Link 16 架构概述 第 D 节 Link 16 架构的功能 第 E 节 附加功能摘要 第 2 部分 终端和接口 第 A 节 Link 16 数据终端 第 B 节 语音传输和接收 第 C 节 JTIDS TACAN 端口接口 第 3 部分 时分多址架构 第 A 节 TDMA 和 Link 16 网络 第 B 节 Link 16 终端消息类型 第 C 节 时隙内 第 4 部分 Link 16 频谱运营商 第 A 节 Link 16 频率 第 B 节 干扰保护功能 第 C 节 时隙占空比 第 5 部分 Link 16 网络的功能和特性 第 A 节 参与组 第 B 节 时隙分配 第 C 节 网络角色 第 D 节 网络入口 第 E 节 精确参与者定位和识别 第 F 节 中继 第 G 节 通信安全 第 H 节 多网 第 I 节 范围扩展技术
面向任务的对话系统依靠对话状态跟踪 (DST) 来监视交互过程中的用户目标。多领域和开放词汇设置使任务变得相当复杂,并且需要可扩展的解决方案。在本文中,我们提出了一种新的 DST 方法,该方法利用各种复制机制用值填充槽位。我们的模型无需维护候选值列表。相反,所有值都是从对话上下文中动态提取的。槽位由以下三种复制机制之一填充:(1) 跨度预测可以直接从用户输入中提取值;(2) 可以从跟踪系统信息操作的系统信息内存中复制值;(3) 可以从对话状态中已包含的不同槽位复制值,以解决域内和跨域的共指。我们的方法结合了基于跨度的槽位填充方法和记忆方法的优点,从而完全避免使用值选择列表。我们认为,我们的策略简化了 DST 任务,同时在包括 Multiwoz 2.1 在内的各种流行评估集上实现了最先进的性能,其中我们实现了超过 55% 的联合目标准确率。
系统的实际风速𝑡 GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气的燃料电池CO的效率GB提供的热负荷GB的发电效率GT的发电效率GB的加热效率GB的燃烧热量最小天然气的热量是由AC通过AC量加热的GT所用的热量来供热的热量,AC用AC量加热的热量由AC量加热。 AC的系数WHB的转换效率EB的转换效率eB的转换效率time插槽的总发电率𝑡电力插槽电源ligter插槽𝑡转换器的效率是电解仪单元的效率燃烧1M燃料1M'天然气
摘要:定向能量沉积 (DED) 已广泛应用于部件修复。在修复过程中,表面缺陷被加工成凹槽或槽口,然后重新填充。凹槽几何形状的侧壁倾斜角已被公认对修复部件的机械性能有相当大的影响。这项工作的目的是通过实验和建模研究修复各种 V 形缺陷的可行性。首先,通过扫描缺陷区域定义修复体积。然后,对修复体积进行切片以生成修复刀具路径。之后,使用 DED 工艺在具有两种不同槽口几何形状的受损板上沉积 Ti6Al4V 粉末。通过微观结构分析和拉伸试验评估修复部件的机械性能。对修复部件的测试表明,在三角形槽口修复中,沉积物和基材之间具有良好的结合。开发了基于顺序耦合热机械场分析的 3D 有限元分析 (FEA) 模型来模拟相应的修复过程。测量了修复样品上基体的热历史,以校准 3D 耦合热机械模型。温度测量结果与预测的温度结果非常吻合。之后,使用经过验证的模型预测零件中的残余应力和变形。预测的变形和应力结果可以指导修复质量的评估。
