• 太空政策指令 3 指示将责任从国防部 (DoD) 转移到 DOC,为太空运营商提供基本的 SSA 服务,确保航天安全 ▪ 认识到迫切需要更准确、更及时的 SSA 数据 ▪ 使国防部能够集中资源用于国家安全
- 地面软件和人员没有为持续的故障排除做好准备 - DSN 联系时间和团队开发和 V&V 序列的时间有限 - 自动进行脱饱和机动的 BCT 软件的动量约束和限制 - 使用 ACS 遥测和多普勒排列多普勒/动量/热响应以查看动量变化并计算产生的推力 • 飞行测试活动非常全面,包括加热、占空比、压力、阀门驱动等。
WBS 描述 1 项目管理 2 系统工程师 3 安全和任务保障 4 科学与技术 5 有效载荷仪器 6 航天器 7 任务操作 8 运载火箭/服务 9 地面系统 10 系统集成与测试
Janus 是一次由两艘航天器组成的 SmallSat 任务,旨在飞越两对不同的双星近地小行星,即 (175706) 1996 FG3 和 (35107) 1991 VH。两艘相同的 Janus 航天器计划于 2022 年 8 月 1 日开始的发射期间作为 NASA Psyche 任务的辅助有效载荷,由 SpaceX Falcon Heavy 运载火箭发射。Janus 由科罗拉多大学博尔德分校的首席研究员 Dan Scheeres 博士领导,由洛克希德马丁公司管理、建造和运营。这些行星 SmallSat 与大型任务有许多相似的深空挑战:Janus 必须执行深空机动以实现每秒数百米的 ΔV 才能到达目的地,关闭高达 2.4 AU 范围内的电信链路,在太阳合相期间自主管理长达数月的电信中断,在 1.62 AU 的最大太阳范围内运行,并在行星际空间中存活大约四年,然后才会遇到目标小行星。在相遇期间,航天器将返回小行星的高分辨率可见光和红外图像。在将 Janus 送上发射台的过程中,实施团队成功管理了积极的任务时间表,尽管受到 COVID-19 相关供应链影响和工作环境的影响,同时仍保持了 SIMPLEx-2 成本上限的目标。Janus 是可实现且负担得起的 SmallSat 科学任务的探路者,并展示了经验丰富的深空任务工程团队、SmallSat 商业组件行业和具有前瞻性的 NASA D 类科学任务模型之间的宝贵伙伴关系。
当NASA的太空发射系统(SLS)火箭在2021年与Orion Crew车辆发射时,它将为NASA的目标奠定基础,即在Artemis计划的一部分中登陆第一位女士和下一个男人。第一次航班 - Artemis I-也将标志着Smallsats的里程碑。13个6u立方体显示在Artemis I飞行中,这是第一架立方体的舰队,作为乘车场的乘车机会。(NASA的第一个Cubesats到Deep Space,Twin Mars Cube One [Marco]航天器是Insight Mars Lander Mission不可或缺的一部分)。Artemis I Cubesat明确代表了各种各样的Smallsats,执行了一系列科学任务和技术演示。来自NASA,国际合作伙伴,学术界和行业的有效载荷将执行各种实验。几个小萨特人将执行以月球为重点的任务,这些任务可能会返回数据,以解决该机构的月球勘探计划中的战略知识差距(SKG)。的确,Artemis I Cubesats将在该机构21世纪Lunar计划的先锋队中。Artemis I任务将产生数据,以支持太空辐射意识,船员着陆和现场资源利用,有助于支持持续的人月球存在。几个Artemis I Cubesats正在展示新技术,包括推进功能。在Artemis I Cubesats中,是NASA的Cube Question挑战的三个,这是百年挑战计划的一部分。这三个任务将在达到特定技术发展目标的同时争夺奖金。日本和意大利太空机构的有效载荷为国际参与Artemis计划提供了早期机会。学生参与几乎一半的有效载荷允许STEM与NASA的Artemis计划互动。Artemis I Flight的SLS Block 1车辆由几个元素运送到肯尼迪航天中心(KSC),并准备堆叠和集成。该程序的新开发,即212英尺的核心阶段,其安装了四个RS-25发动机目前在Stennis Space Center(SSC)进行“绿色运行”测试。在绿色运行测试活动之后,舞台将运送到KSC,在那里它将与其余车辆集成,包括上层阶段适配器,其中Artemis I Smallsats将被容纳。
破译火星极地冰盖的起源和演化,有助于我们更好地了解火星的气候系统,并将成为类地行星比较气候学的一大进步。随着科学界对火星高纬度地区探索的兴趣日益浓厚,以及需要尽量减少着陆器和探测车上的资源,这促使人们需要从轨道上获得足够的导航支持。在 ARES4SC 研究的背景下,我们提出了一个基于星座的新概念,该星座可以支持致力于对这些地区进行科学研究的不同类型用户的自主导航。我们研究了两个星座,它们的主要区别在于半长轴和轨道倾角,由 5 颗小型卫星组成(基于 Argotec 正在开发的 SmallSats 设计),专门覆盖火星极地地区。我们专注于卫星间链路 (ISL) 的架构,这是提供星历表和时间同步以广播导航信息的关键元素。我们的概念基于适当配置的相干链路,这种链路能够抑制星载时钟不稳定性的不利影响,并在星座节点之间提供出色的距离率精度。数据质量使两个星座在一个高度自主的系统下都能获得良好的定位性能。事实上,我们表明,通过采用 ISL 通信架构可以大大减少地面支持。通过主航天器(母航天器),星座节点上的时钟可以定期与地面时间 (TT) 同步,主航天器是星座中唯一能够与地球进行无线电通信的元素。我们报告了不同操作场景中的数值模拟结果,并表明可以使用批量顺序滤波器或具有重叠弧的批量滤波器为星座节点获得非常高质量的轨道重建,这些滤波器可以在母航天器上实施,从而实现高度的导航自主性。利用这一概念来评估可实现的定位精度对于评估未来定位系统覆盖红色星球的可行性至关重要。
本报告概述并评估了截至 2023 年 9 月公开可用的最先进的小型航天器技术。技术成熟和小型化继续扩展小型航天器的能力,从而催生出更复杂的 SmallSat 任务设计。这些改进的功能扩大了常见的 SmallSat 平台,包括更大的立方体卫星和更小的 SmallSat;传统的 1U 和 3U 体积的立方体卫星平台现在包括高达 16U 的外形尺寸,曾经设计为 <400 公斤的 SmallSat 现在 <100 公斤,具有类似的能力,但成本更低。功能更强大的 SmallSat 平台的表面积更大,可以配备更多的太阳能电池板和子系统布置选项。SmallSat 行业正在跳出固有的思维模式,以最大限度地利用整个航天器体积,并设计日益复杂的未来 SmallSat 任务。
THEOS-2 是继 2008 年发射的由空客制造的 THEOS-1 卫星之后的又一卫星,该卫星在其 10 年的使用寿命之后仍继续提供图像。在 THEOS-2 计划框架内,GISTDA 的地理信息系统受益于空客光学和雷达地球观测卫星星座(如 Pléiades 和 TerraSAR-X)收集的卫星图像。该合同还包括空客子公司 SSTL 制造的第二颗地球观测卫星 - THEOS-2 SmallSAT,以及一项综合能力建设计划,该计划让泰国工程师参与应用程序、地面部分和 SmallSAT 航天器本身的开发。THEOS-2 SmallSAT 基于 SSTL 的 CARBONITE 系列地球观测航天器,已交付泰国。SSTL 还为 GISTDA 提出了一项培训计划,使泰国工程师能够在未来在泰国设计、制造、集成和测试类似的小型卫星。 THEOS-2 项目的图像将成为 GISTDA 未来泰国地球观测系统的关键,该系统将用于支持各个方面,包括但不限于社会和安全管理、城市和经济走廊管理、自然资源和生态系统管理、水资源管理、灾害管理和农业管理。
2009 年至 2018 年,小型卫星市场经历了 23% 的复合年增长率 (CAGR)。预计 2019 年至 2024 年间将实现更大的扩张。