端到端系统由一组低地球轨道卫星子星座(上游段)、地面运营基础设施(下游段)和面向意大利公共行政部门的服务(服务段)组成。基于多种不同的传感仪器和技术,IRIS 星座将是独一无二的;范围从微波成像(使用合成孔径雷达,SAR)到各种空间分辨率(从高分辨率到中分辨率)和不同频率范围的光学成像,从全色到多光谱、高光谱到红外波段。
Haris Riris 1,James B. Abshire 1,Michael Mumma 1,Geromino Villanueva 1,Thomas Hanisco 1,1 Grogdard太空飞行中心,8800 Greenebelt Rd。 简介:我们描述了一种效率和敏感方式来绘制行星气氛中痕量气体丰度的方法。 该方法使用一对在圆形极性轨道形成中飞行的小卫星。 每个卫星都带有几个可调的单频率二极管激光器和一个灵敏的光学检测器。 每个卫星的激光束都通过行星气氛的肢体指向,以照亮另一个卫星。 通过痕量吸收线调整二极管激光的波长,可以在另一个卫星接收器处测量的路径中的气体刺激。Haris Riris 1,James B. Abshire 1,Michael Mumma 1,Geromino Villanueva 1,Thomas Hanisco 1,1 Grogdard太空飞行中心,8800 Greenebelt Rd。简介:我们描述了一种效率和敏感方式来绘制行星气氛中痕量气体丰度的方法。该方法使用一对在圆形极性轨道形成中飞行的小卫星。每个卫星都带有几个可调的单频率二极管激光器和一个灵敏的光学检测器。每个卫星的激光束都通过行星气氛的肢体指向,以照亮另一个卫星。通过痕量吸收线调整二极管激光的波长,可以在另一个卫星接收器处测量的路径中的气体刺激。
与水疗环,专用中小型发射车或集装箱分配器兼容的航天器,质量约为500 kg
摘要 本文探讨了小型卫星的历史、不同的可用平台、典型应用、运载火箭和未来部署。小型卫星 - 历史 可以说,太空时代始于小型卫星 Sputnik 1 的发射。按照当今小型卫星尺寸和重量的标准,Sputnik 1(直径 58 厘米,80 公斤)将被视为小型卫星,具体来说是微型卫星。与小型卫星的共同元素 卫星平台及其组件的标准化加强了小型卫星的使用,并使卫星技术变得触手可及。小型卫星主要使用具有最新技术的商业现货 (COTS) 组件,例如:• 微机电系统 (MEMS) • 主动和被动脱轨 • 使用快速原型 • 在轨服务 • 即插即用系统 • 分辨率改进 • 在轨自主性 • 姿态知识和控制 • 机载电源来源:( https://digitalcommons.usu.edu/smallsat/ 任务类型已定义任务类别,以帮助区分不同类型的应用程序,如下所示:
关键卫星子系统和探测器技术的小型化和商业可用性方面的最新进展使小型卫星(SmallSats,包括CubeSats)成为空间天气研究和业务需求的一种有吸引力的低成本潜在解决方案。受 2017 年 8 月 1 日至 4 日在华盛顿特区举行的第 1 届空间天气研究和预报小型卫星国际研讨会的启发,我们讨论了由世界气象组织 (WMO) 的分析推动的先进空间天气测量能力的需求,以及小型卫星如何有效填补这些测量空白。我们介绍了最近发射的任务和拟议/即将使用小型卫星来加强空间天气搜索和操作的任务概念,它们与 WMO 要求的关系,以及为实现 WMO 目标仍需克服哪些挑战。借助全球相关资助机构的额外投资,小型卫星(包括独立任务和星座)可以显著增强空间天气研究和运行,降低成本,并实现传统大型整体任务无法实现的新测量。
小型卫星以集群形式发射,这些集群称为星座,与单颗卫星相比,它们可以覆盖和连接更大的地球区域。2018 年发射了 328 颗小型卫星,是 2013 年至 2017 年每年平均发射数量的两倍,占当年发射的所有卫星的 69%。一些市场预测表明,到 2030 年,在轨小型卫星的数量将呈指数级增长。这一趋势主要归因于微电子技术的进步、开发和制造周期的缩短以及发射成本的降低。联邦和国际监管机构已经收到了未来五年向低地球轨道发射数千份商业小型卫星的申请。目前已有 1,300 多颗卫星在轨运行,包括载人国际空间站 (ISS),拥堵问题日益严重,可能造成轨道碎片、防撞以及指挥和控制所需的有限无线电频率分配等问题。
小型卫星 (SmallSat) 技术的最新发展为太空任务的新范式打开了大门。NASA 最近的一份技术论文详细介绍了当前小型航天器技术的最新进展 [1]。小型卫星是传统卫星的较小尺寸。小型卫星对太空任务设计人员来说具有吸引力,因为它们可以使用商用现货组件,并且可以作为次要有效载荷共享,从而降低成本。次要有效载荷适配器对小型卫星的质量和体积有严格的要求,它们必须在发射前收起,并从适配器上释放后展开,例如 EELV 次要有效载荷适配器 (ESPA) [2]。目前,ESPA 平台有许多变体,其中一些配置为用作轨道转移飞行器。图 1 展示了标准 ESPA 变体。截至 2018 年,NASA 科学任务理事会 (SMD) 采取了一项积极的政策,将 ESPA 环集成到具有额外上升性能的 SMD 任务中,以便为次要有效载荷提供共享机会 [3]。
现在正是美国充分利用小型卫星(或称“SmallSats”)独特属性来取得太空优势的时候。中国和俄罗斯等对手已经开发了反太空武器,以针对脆弱的美国传统太空架构,该架构最初设计用于在无争议的太空领域运行。同样,对手的太空杀伤链对美国及其盟国在世界各地的空中、陆地和海上部队构成了越来越大的威胁。建立太空弹性是不够的。美国必须拥有实现太空优势的工具,并履行竞争持久性的原则——避免作战突袭、拒绝先发优势和开展负责任的反太空战役。成熟的技术、较低的发射成本和日益增加的威胁相结合,为美国创造了一个转瞬即逝的机会之窗,使其能够部署带有 SmallSats 的架构,以实现获得和保持太空优势所需的能力。
本报告概述并评估了截至 2023 年 9 月公开可用的最先进的小型航天器技术。技术成熟和小型化继续扩展小型航天器的能力,从而催生出更复杂的 SmallSat 任务设计。这些改进的功能扩大了常见的 SmallSat 平台,包括更大的立方体卫星和更小的 SmallSat;传统的 1U 和 3U 体积的立方体卫星平台现在包括高达 16U 的外形尺寸,曾经设计为 <400 公斤的 SmallSat 现在 <100 公斤,具有类似的能力,但成本更低。功能更强大的 SmallSat 平台的表面积更大,可以配备更多的太阳能电池板和子系统布置选项。SmallSat 行业正在跳出固有的思维模式,以最大限度地利用整个航天器体积,并设计日益复杂的未来 SmallSat 任务。
