抗生素耐药细菌的兴起强调了药物库中新抗生素的需求,以治疗细菌感染[1,2]。2018年,世界卫生组织(WHO)估计,每年大约1000万人中有150万人遭受结核病感染屈服于这种毁灭性的慢性感染[3,4]。尤其是紧迫的是需要具有新作用机理的抗生素。一个非常有吸引力的靶标是Dizinc酶二氨基二氨基二氨基酸酯酶(DAPE),[5],它是所有革兰氏阴性细菌和最革兰氏阴性细菌中原代赖氨酸合成途径中的一种酶[6]。因此,Div> dape是赖氨酸以及L,L-二二酰胺酸(L,L-DAP)的生产所必需的,这是细菌细胞壁生产中的关键组成部分。在幽门螺杆菌和分枝杆菌中进行的敲除实验表明,即使在赖氨酸柔软的培养基中,细菌也无法生存[7,8]。作为哺乳动物,人类不表达dape,赖氨酸是必不可少的饮食氨基酸。早些时候,我们筛选了一个潜在的DAPE抑制剂的少量库,并鉴定了含硫醇的血管紧张素转化酶(ACE)抑制剂药物Captopril作为DAPE [9]的低微摩尔抑制剂[9],此后已报道了与BOND-CASTOPRIL的DAPE的dape [10]。有趣的是,Diaz-Sanchez具有Dape与avonoids [11]以及孤立甲基和拆卸纤维的研究相互作用[12]。环丁酮是具有独特特性的中间体和合成靶标的重要类别[14,15]。最近,我们还报道了替代DAPE底物N 6,N 6-二甲基-SDAP的不对称合成以及基于DAPE的新的基于Ninhydrin的测定法[13]。紧张的四元环将环丁酮具有构象刚性的固定性,还使酮羰基相对于未经培养的酮而言更高。环丁酮在药物化学中已证明了实用性是共价但可逆的丝氨酸蛋白酶抑制剂,当时是由亲电的酮羰基来实现的,而SP 2
测试的代表性微生物:(部分概要)HyGenesis 系统:细菌 醋酸钙不动杆菌 1 真菌 黑曲霉 基于独特的抗菌技术,可有效控制各种处理物品和基质上的细菌、真菌、藻类 枯草芽孢杆菌 烟曲霉 和酵母。抗菌活性物质是在美国环境保护局和全球类似监管机构注册的猪布鲁氏菌 杂色曲霉 布鲁氏菌 出芽短梗霉 伯克霍尔德菌 洋葱毛壳菌。这种抗菌剂已安全有效地使用了三十多年。产气荚膜梭菌 镰刀菌 鲍氏棒状杆菌 粉红粘帚菌 本表是应众多要求编制的,要求提供该技术有效的微生物清单。我们选择了大肠杆菌 ATCC 23266 白色青霉菌,以提供测试谱,其中大肠杆菌 1 黄青霉菌 代表所有重要类型和猪嗜血杆菌 柑橘青霉菌 微生物种类。流感嗜血杆菌 秀丽隐杆线虫 肺炎克雷伯菌 ATCC 4352 绳状青霉 干酪乳杆菌 腐殖质青霉 乳酸明串珠菌 青霉菌 单核细胞增多性李斯特菌 变异青霉 耐甲氧西林葡萄球菌 金黄色葡萄球菌 黑根霉 微球菌 sp. Stachybotrys atra 耻垢分枝杆菌 黄木霉 结核分枝杆菌 趾间毛癣菌 痤疮丙酸杆菌 须毛癣菌 奇异变形杆菌 藻类 奇异变形杆菌1 鱼腥藻 B-1446-1C 普通变形杆菌 小球藻 铜绿假单胞菌 Gium sp. LB 9c 铜绿假单胞菌 PRD-10 波恩颤菌 LB143 铜绿假单胞菌 1 胸膜球菌属 LB11 洋葱假单胞菌 四尾假单胞菌 细长月牙藻 B-325 猪霍乱沙门氏菌 团藻属 LB 9 伤寒沙门氏菌 酵母菌 金黄色葡萄球菌(无色素)1 白色念珠菌 金黄色葡萄球菌(有色素)1 酿酒酵母 表皮葡萄球菌 1 病毒 粪链球菌 禽流感 变形链球菌 HIV B 万古霉素耐药肠球菌 (VRE) 甲型流感 野油菜黄单胞菌 SARS
细胞导致相关分子丧失,并最终导致细胞裂解或死亡。具有内腔直径在顺式入口的2.9 nm之间,内部腔内为4.1 nm,内部收缩处为1.3 nm,在β-贝尔的反式入口处有2 nm,[27]αHL是第一个使用DNA和RNA Polimers的电流转移的纳米孔[27]αHl是第一个纳米孔和RNA Polimers的电流变化。其他用于感应的蛋白质孔包括smegmatis porin A(MSPA)[29]和细菌外膜通道CSGG [26,30],后者用于牛津纳米孔技术的商业设备中,用于纳米孔基于基于纳米孔的DNA和RNA序列。Sensing has also been explored with the PA 63 channel of anthrax toxin, [31] the potassium channel KscA, [32] the toxin aerolysin, [7,33] the mechanosensitive channel MscL, [34] the bacterial transporter FhuA, [9,35] the bacterial toxin ClyA, [36] and the bacteriophage phi29 DNA packaging motor.[37]生物纳米孔对商业产物是有利的,因为生物蛋白表达能够以精确且一致的几何形状对纳米孔进行大规模制造。一致的几何形状是必不可少的,当纳米孔被用作单分子传感器,其中读出密切取决于纳米孔的结构。适应许多传感应用的纳米孔需要在天然存在的蛋白质纳米孔中较少丰富的结构特征。蛋白质纳米孔已被广泛突变[38],以获取特定的感测,例如尺寸选择性或特定的分子相互作用。例如,报告了一个基于MSPA的纳米孔传感平台[39],其中将理性设计的聚合物链束缚在MSPA孔中。这使得对广泛的分析物,化学反应监测以及对映异构体的歧视启用了单分子检测。[40]可以通过更换,[41]删除,[42,43]或添加氨基酸[44]来引入蛋白质孔的修饰,从而更改表面电荷,[45] functional oft oft off inctional [46]和疏水性[47]和孔的疏水性[47],如Soskine等人所示。clya孔。[48]这些特异性突变会因pH [49]或盐浓度的变化而改变孔的稳定性。[50]然而,引入了几种化学修饰,使可预测结构的毛孔的制造变得困难。小尺寸的肽孔可以通过简单地包含在L-氨基酸的常规寄存之外的氨基酸残基来更高的设计多功能性。[51,52]肽还促进了非蛋白质生成氨基酸的高度可调设计器毛孔的完整设计。[53,54]受到天然存在的抗生素gr米核酸孔的结构的启发,合成肽孔的