得到具有更长距离基因组信息的“细菌”,从而生成名为 Rnor3.1 [1] 的组装体。这产生了 128,000 个 N50 长度约为 38kb 的重叠群,它们被连接到 738 个超级细菌(N50 = 5.4Mb),这些超级细菌最终可以连接起来形成约 300 个更大的组装亚基。后续修订包括从雄性 SHR/Akr 大鼠中进行 Y 染色体测序,以补充用作 Rnor3.1 DNA 来源的两只雌性大鼠。通过引入额外的组装方法和序列数据,该基因组组装得到了逐步改进,一个显着的变化是纳入了单分子实时(SMRT)测序连续长读(CLR)数据(Pacific Biosciences),以增强 2014 年发布的 Rnor_6 版本中具有结构变异区域的组装。表 1 简要总结了这些组装体的属性。
Highly accurate long-read single-molecule sequencing has revolutionized the comprehensive assembly of phased genetic architectures (Wenger et al.2019; Vollger等。2020; Nurk等。2022)。In addition, long-read single-molecule sequencing has permitted the direct identification of modified DNA bases such as m6A and 5-methylcytosine (5mC) (Marks et al.2012;克拉克等。2012; Murray等。2012; Loman等。2015; [CSL样式错误:没有印刷表格的参考。])启用单分子染色质纤维测序(Stergachis等人2020; Lee等。2020; Abdulhay等。2020; Shipony等。2020)。Specifically, single-molecule chromatin fiber sequencing leverages non-specific methyltransferases to selectively stencil chromatin protein occupancy patterns directly onto their underlying DNA molecules in the form of modified bases.修饰碱基。For example, during single-molecule, real-time (SMRT) sequencing, the identity of each base is determined based on the fluorophore-labeled
采集了 30 位捐献者的唾液样本,其中 90% 的分析前 DNA 质量 >2 µg。从 27 个样本中提取了 HMW DNA,其中 93% 的产量 >500 ng。提取后,使用 Qubit dsDNA BR 检测试剂盒对 DNA 进行定量,并使用 Femto Pulse 系统(安捷伦科技公司)进行表征。使用 SMRTbell ® 制备试剂盒 3.0 为部分样本制备 HiFi 文库,并使用 SPRQ™ 化学方法在 Revio 系统上进行测序。每个样本都在一个 Revio SMRT 测序池上进行测序。表 1 总结了五个代表性样本的测序数据。这些样本产生了 4.7 到 15.9 µg 的 HMW DNA。HiFi 测序产量为 119 到 133 Gb 的 HiFi 数据,每个基因组的覆盖率为 27 到 40 倍,足以进行全面的 WGS 变异检测。 75% 到 95% 的读数映射到人类参考基因组 (GRCh38)。
t Bio Farma(Persero)使用Borde-tella thea thea attuse pelita pelita III生产全细胞百日咳(WP)疫苗。百日咳菌株的抗原特性会随着时间的流逝而变化(1-3),因此,需要监测工作种子的这些特征以产生有效的疫苗。顺便说一句,最近的基因组学革命使全基因组shot弹枪进行了快速,准确且具有成本效益的途径,不仅检查疫苗抗原基因,而且还检查了生产过程至关重要的其他基因。但是,这取决于全基因组序列的可用性。出于这些原因,并且与其他百日咳疫苗生产菌株进行了详细比较,确定了百日咳芽孢杆菌菌株pelita III的整个基因组序列。The sequencing was performed at the University of Delaware Sequencing & Geno- typing Center (Newark, DE) on the PacBio RS II platform, employing single-molecule real-time (SMRT) technology (Pacific Biosciences, Menlo Park, CA) (4), yielding 141,140 reads totaling 888,059,822 bases.通过层次基因组组装过程(HGAP)工作流进行了从头基因组组装(4)。使用Gepard测试了组装序列的圆形,并用AMOS和Minimus2生成圆序(5,6)。最终组装产生了一个具有141.91覆盖率的4.1-MB基因组的重叠群。使用美国能源部联合基因组研究所(美国加利福尼亚州核桃溪)的综合微生物基因组综述(IMG/ER)平台进行了基因的初始识别和注释(7)。GenBank注释利用了NCBI原核基因组注释管道(8)。在基因组水平上,Pelita III与Bordetella buttussis tohama I(9,10),参考菌株(11)和百日咳疫苗的主要来源密切相关(3,12)。每种发病机理基因的核苷酸序列,包括疫苗抗原的核苷酸序列,即百日咳毒素(PT),心霉素(PRN),膜状血凝集素(FHA)(FHA)和纤维mbriae(FIM),在两种菌株中是相同的(13)。观察到的两个基因组之间的差异有两种类型:(i)Pelita III中的其他元素,可能是由于换位引起的,在两个位置的转座酶INSO的串联重复(BP 44713至
KINNEX 16S rRNA试剂盒将扩增的16S扩增子作为输入,并输出一个可进行测序的库,与标准的FL 16S库相比,该库将导致多达12倍的吞吐量增加。Kinnex 16S套件基于多路复用阵列测序(MAS-SEQ)方法(Al'khafaji等,2024),用于FL 16S扩增子(图3A)。结果明显更高,并且对高精度,成本效率的FL 16S测序的测序需求显着降低,每个PACBIO SMRT细胞的多重能力高达1,536个扩增子样品。我们在各种样本中测试了Kinnex 16S rRNA套件,包括模拟社区标准,凳子,唾液,植物,土壤,废水,废水和拭子(皮肤,口腔,阴道和兽医伤口)。然后,我们使用用户友好的生物信息学管道HIFI-16-Workflow分析了数据,该管道为FL 16S HIFI读取提供了快速Q-to-Report分析解决方案(图3B)。我们还检查了读取深度对样本类型中检测到的物种数量的影响(图4)。
我们已为六倍体普通小麦品种“Fielder”建立了高质量的染色体水平基因组组装,Fielder 是美国软质白色糕点型小麦,于 1974 年推出,以易受农杆菌介导的转化和基因组编辑而闻名。使用 HiFi 方法的 PacBio 环状共识测序获得了准确的长读序列。使用 hifiasm 组装器组装的 16 个 SMRT 细胞的序列读数产生了 N50 大于 20 Mb 的组装体。我们使用 Omni-C 染色体构象捕获技术将重叠群排序为染色体水平组装体,得到 21 个伪分子,累计大小为 14.7,未锚定重叠群为 0.3 Gb。对含有已编辑的种子休眠基因 TaQsd1 的转基因小麦植物的已发表短读段进行定位,确定了转基因插入小麦染色体的四个位置。在伪分子中检测向导 RNA 序列为脱靶突变诱导提供了候选。这些结果证明了使用 PacBio HiFi 读段进行染色体规模组装的效率及其在小麦基因组编辑研究中的应用。
kodakarensis(T. kodakarensis)是一种高疗,遗传上易于访问的模型古迹,编码了两个推定的限制修改(R-M)防御系统,TKOI和TKOII。TKOI由TK1460编码,而TKOII由TK1158编码。生物信息性分析表明,这两种R-M酶都是大的,融合的甲基转移酶(MTase) - 核酸酶多肽,含有既有限制性核酸内核酸酶(Rease)活性,以降解外核核酸酶(Rease),以降解外核酸内核酸酶(Rease),以降解甲基盐宿主DNA的脱脂外核酸酶(Rease),降低了甲基酯宿主DNA的特定识别基因组基因组DNA。在这项工作中,与完整的R-M系统的菌株相比,我们对任何一种或两种R-M酶进行了否决t. kodakarensis菌株的生长较慢,但表现出显着提高的能力,这表明TKOI和TKOII都可以促进维持基因组综合的维持型dna dna dna dna dna trandf。pacififbiosciences单分子实时(SMRT)测序t. kodakarensis菌株,其中均包含一个或两种R-M系统允许分配TKOI和TKOII的识别位点,并证明了这两种R-M酶是型的; tkoi和tkoII甲基盐N 6
卵巢癌是妇科肿瘤死亡率最高的肿瘤之一。目前的5年卵巢癌存活率<35%。因此,需要更多新颖的替代策略和药物来治疗卵巢癌。转录因子B细胞淋巴瘤6(BCL6)与卵巢癌治疗中的预后和顺铂耐药性差有关。因此,BCl6可能是卵巢癌的有吸引力的治疗靶点。但是,靶向BCL6在卵巢癌中的作用仍然难以捉摸。在这里,我们开发了一种新型的Bcl6小分子抑制剂WK369,该抑制剂具有出色的抗毒药癌生物活性,诱导细胞周期停滞并引起细胞凋亡。wk369在没有明显的体外和体内毒性的情况下有效抑制卵巢癌的生长和转移。同时,WK369可以延长卵巢癌小鼠的生存。值得注意的是,WK369还对抗顺铂的卵巢癌细胞系具有显着的抗肿瘤作用。的机理研究表明,WK369可以直接与Bcl6-BTB结构域结合并阻止Bcl6和SMRT之间的相互作用,从而导致p53,ATR和CDKN1A的重新激活。bcl6-akt,bcl6-mek/erk串扰被抑制。首次尝试,我们的研究表明,靶向Bcl6可能是治疗卵巢癌的有效方法,WK369有可能用作卵巢癌的候选治疗剂。
抽象的DNA甲基化在所有生命领域都具有多种功能。在这项研究中,我们研究了三方二烷基卤代联盟中的古细菌甲基团。该联盟包括Haloferax Lucertense SVX82,Halorhabdus sp。svx81,以及一个来自dpann superphylum的纳米尺寸的纳米大小的古scultus svxnc。我们利用PACBIO SMRT和Illumina cDNA测序来分析来自不同组成的甲基甲基组学和转录组学的样品。内源性C TAG甲基化(典型的Haloferax)伴随着甲基化在其他四个基序中,包括GDG C HC甲基化,这是外尾疗特定的。我们对甲基化和未甲基化基序的分布的分析表明,自phat甲基化可能会影响基因调节。Graga A G甲基化的频率在高度表达的基因中增加,而C C TTG和GTCG A GG甲基化可以与限制性修饰(RM)活性有关。一般而言,在该古代的演变过程中,RM活性可能已经降低,以平衡细胞免受入侵者的保护,在压力环境中自限制引起的DNA损伤的减少以及在极端条件下DNA交换的益处。我们的甲基甲基菌群(Cryo-ET)数据表明,我们的甲基甲基分析酶导出了其甲基转移酶,以甲基化Haloferax基因组,揭示了共生体与宿主之间的相互作用的新方面。
郭锦彪现为新加坡国防部高级研发顾问。他于 1981 年毕业于新加坡国立大学,获得电气工程学士学位(一级荣誉学位),并于 1986 年在美国海军研究生院获得电气工程理学硕士学位(优异)。在他的职业生涯中,他曾在国防和科技界担任过各种职务,包括国防部研发主任和国防科技局董事会副首席执行官(技术)。他于 2004 年 2 月 1 日至 2016 年 6 月 30 日担任 DSO 首席执行官,并于 2016 年 4 月 1 日至 2021 年 5 月 14 日担任国防部首席国防科学家。他是各种组织、机构的董事会成员和公司董事。他是量子技术中心 (CQT) 理事会主席、空间技术与工业办公室 (OSTIn) 副主席,也是 A*STAR 董事会、SMRT Trains Ltd、D'Crypt Pte Ltd、新加坡科技工程有限公司董事会、新加坡理工学院董事会和新加坡科技设计大学董事会的成员。他还是新加坡工程院院士,以及新加坡国立大学电气与计算机工程系兼职教授。郭先生于 1992 年荣获国防技术奖(个人)。他还于 2007 年荣获公共管理奖章(金奖),并于 2014 年荣获新加坡国立大学杰出工程校友奖。