摘要 焊料的润湿性对于实现电子元件和印刷电路板 (PCB) 之间的良好可焊性非常重要。锡 (Sn) 镀层被广泛用于促进焊料在基板上的润湿性。然而,必须考虑足够的锡镀层厚度才能获得良好的润湿性和可焊性。因此,本研究调查了电子引线连接器的锡镀层厚度及其对润湿性和电连接的影响。在电子引线连接器表面应用了两种类型的锡镀层厚度,~3 μm 和 5 μm。研究发现,~3 μm 的薄锡镀层厚度会导致电连接失败,并且焊点润湿性和可焊性不足。5 μm 的较厚锡镀层厚度表现出更好的润湿性和可焊性。此外,电连接也通过了,这意味着较厚的锡镀层厚度提供了良好的焊点建立,从而带来了良好的电连接。还观察到,较厚的锡镀层厚度实现了更好的焊料润湿性。场发射扫描电子显微镜 (FESEM) 的结果表明,对于较薄的锡镀层厚度 (~3 μm),引线连接器表面的金属间化合物 (IMC) 层生长被视为异常,其中 IMC 层被消耗并渗透到锡涂层的表面。这导致薄锡镀层与焊料的可焊性较差,无法形成焊点。本研究的结果有助于更好地理解考虑足够的锡镀层厚度的重要性,以避免锡镀层处的 IMC 消耗,以及更好的润湿性、可焊性和焊点质量,这对于表面贴装技术 (SMT) 尤其适用于电子引线连接器应用。
即使课程将以在线模式进行,考虑到拉贾斯坦邦的病例微乎其微,大学是否可以允许 HD 学生在校园内学习?晚安先生,因为我们需要做小组项目,而且 CSE 部门的大多数人也接种了疫苗,如果我们能被叫到校园,我们会非常高兴,它将为我们提供一个环境和编码文化,我们无法在家里发展,请照顾好这一点先生
在我们的工作中,我们合成了一种新型的四囊藻烷,吸光度高达560 nm,比商业最先进的PI长约70 nm。反应性和光漂白行为,并在460 nm处产生出色的特性。最关键的参数之一是稳定性,因为到目前为止,尚无文献知名的基于SN的PI的稳定性,足以使其进入工业应用。借助我们的新型Tetraacylstannane,我们发现了第一个基于SN的PI,它与当前基于GE的PI一样稳定,因此满足了所有工业光聚合过程的标准。
近年来由于人们环保意识的提高,将太阳能直接转化为电能引起了人们的极大关注。1,2有机-无机卤化物是一种光电转换材料,由于其成本较低、原料丰富,主要用于染料敏化太阳能电池(DSC),尤其是这种CH3NH3PbI3材料。3 – 6几十年来,CH3NH3PbI3材料的光伏效率已经达到近20%,但由于有机分子的挥发性和热力学不稳定性,实用性有待提高。7,8最近,基于第一性原理计算,已报道了一种稳定的六方相,其具有共面的PbI6八面体,而不是CH3NH3PbI3的角连接八面体。 9而全无机卤化物不仅弥补了有机分子热力学不稳定的特性,而且保持了较高的光伏效率。10-12大量研究表明,最理想的光伏材料具有
Jean-FrançoisSilvain,LoïcConstantin,Jean-Marc Heintz,SylvieBordère,LionelTeulé-Gay等在液相键合中控制界面交换,可以为高功率和温度应用形成强可靠的Cu – SN焊接。ACS应用电子材料,2021,3(2),pp.921-928。10.1021/acsaelm.0c01040。hal-03153399
与5μm厚的Ti层之间的650°C和950°C之间的键合1小时如图6。在BSE图像中显示的ALN层中的灰色区域。6(b)和6(d)是yttria。NBD模式是从相应TEM图像中以黄色圆圈的区域获取的。可以看出,随着加热温度从650°C上升到750°C,由于Cu – Ti IMC层的生长,残留的Ti层消失了。另外,可以看出,Cu – Ti IMC的层消失,并且在850°C或更高的ALN界面处形成一个明显的界面反应层。这些界面反应层的厚度,从图。6,在850°C下为≈0.5μm,在950°C下为≈1μm,
x] i 3作为合金浓度x的函数。实线代表每个计算的数据的变化,并且虚线(黑色)线是指pb-end和sn-end之间的参考线性插值。(b)在CS [pb x sn 1- x] i 3中,光电特性关系将εαβ和n与带隙1/ e g 2相关联,作为合金浓度x的函数(由插图x轴显示)。Penn模型拟合通过虚线显示,每个εαβ和n具有相应的相关性。
基于合金的NBTI电线和基于A15的基于A15的金属间com磅NB 3 SN线在许多超级导电设备中实际使用。尤其是,NB 3 SN线用于产生10 T或更高磁场的超导磁体中,超过了NBTI电线的临界磁场。但是,NB 3 SN线需要与NB-TI超导电线不同的ELEMENTAL技术,例如根据结构设计将其处理成通过将NB丝与CU-SN合金相结合的电线后的结构设计(未反应NB 3 SN SN线)后,根据结构设计将其处理为NB 3 SN生成热处理。此外,NB 3 SN生成热处理后的电线(反应NB 3 SN线)不仅在机械上易碎,而且具有超导特性,这些特性会因外部应变1)而发生变化,因此,将NB 3 SN生成的NB 3 SN生成治疗方法(W&R)方法缠绕未隔离的NB 3 SN WIRE后,通常使用了COIL,通常使用了COIL。此外,由于需要在较大的电磁应力下的电流特性改善以提高磁铁的性能,以提高磁场的性能和较大的尺寸,因此有必要提高NB 3 SN线本身的强度,并通过将NB 3 SN SN Wires扭转在一起而产生的调节器。通过与Tohoku University的联合研究,Furukawa Electric Co.,Ltd。开发了使用新方法(NB-Rod div div> div>通过与Tohoku University的联合研究,Furukawa Electric Co.,Ltd。开发了使用新方法(NB-Rod div div> div>
•4铁和铁与合金金属:MO,Ti,W,V•14非有产金属:Al,SB,BI,BI,CD,GA,GA,GE,GE,IN,PB,PB,HG,HG,HG,REE,SE,SE,SN,SN,SN,SN,SN,SN,SN,ZN•1贵金属:AU•7工业矿物:工业矿物:Fluorspar,Fluorspar,Fluorspar,fluorspar,gipse,Gipsum,Gipsum,2型矿物,盐,盐,盐,磷,盐,盐,磷酸盐,磷,磷,磷,焦化煤炭
图 3:混合 Pb-Sn 钙钛矿薄膜中缺陷的化学分析。 (ad) 对具有不同 Pb/Sn 混合比的钙钛矿组合物进行的 Sn 3d 5/2 核心能级高分辨率 XPS 光谱。 棕色线是背景,红线与原始数据最吻合。 使用合适的拟合确定薄膜中 Sn 2+ 和 Sn 4+ 的相对丰度 (%)。 (e) 不同 Pb-Sn 混合比 (蓝色) 下 Sn 4+ /Sn 2+ 比率的图,以及从 PDS 测量中获得的 Urbach 能量 (红色)。 (f) 在保持薄膜厚度的同时,具有不同 Pb/Sn 成分的钙钛矿薄膜的积分 PL 计数变化。