“抽象空间” 2023。Chiara Passa 的 AR 和人工智能艺术作品。“抽象空间”通过整面墙的投影,将一个虚构的极简环境(我使用 Chat GPT API 创建)与真实空间重叠,而这个空间一旦被观众使用 AR-AI 应用程序修改,就会神秘、怪异或有时不完整地重新出现在我们周围。观众在这个新的不稳定空间中,通过观看由几何体积阴影构成的新 AI 空间,体验到一种缺失或空虚的感觉,这些阴影是根据缓冲过程沿光源方向挤压图元轮廓而创建的。还提供视频手册(屏幕 7')版本。视频预览:https://youtu.be/zzAaf7hxTYI Android 应用程序和相关矩阵可供下载。每个动画持续 6'.30''。 https://play.google.com/store/apps/details?id=com.ChiaraPassa.AbstractSpace&hl=en https://play.google.com/store/apps/details?id=com.ChiaraPassa.AbstractSpace2&hl=en https://play.google.com/store/apps/details?id=com.ChiaraPassa.AbstractSpace3&hl=en https://play.google.com/store/apps/details?id=com.ChiaraPassa.AbstractSpace4&hl=en
AR辐射偷偷摸摸的预览连续浸润,两光子聚合的3D光子晶体用于中等光谱镜应用,2024年3月15日,2024年3月15日,也称为PHCS,是空间有组织的结构,具有与光波长相等的光学晶格参数。自发现以来,PHC一直在电信行业中找到应用,包括MID-IR光谱应用,电子门和光学计算和ICS的偏振滤波器以及压力强力传感。PHC还可以实现设备小型化(包括微流体),生物传感和化学感应。PHC的唯一几何特性和折射率可以允许或限制在特定频率范围内电磁波的传播。频率的受限范围称为光子带隙(PBG),其存在使结构可以减慢并塑造光。将其应用于气光谱应用中的传感器时,较慢的光会增加光和目标气体之间的相互作用时间,从而增强了灵敏度。PBG高度依赖于PHC和背景材料(通常是空气)之间的折射率(RI)对比度。当存在较差的RI对比条件时,PHC的应用受到限制。在这份新报告中,伊利诺伊大学的伊利诺伊大学科学家和Argonne National Lab通过将内部光学表面覆盖具有ALD沉积的高折射率ZnO的内部光学表面,从而提高了高级三维(3D)PHC的RI,从而使未来的改进能够改进,从而实现了敏感性,准确性,基于pHC的限制。,无论极化如何,带有频带结构中禁光传播频率的完整PBG区域都使三维(3D)PHC在光谱应用中优先于2D和1D PHC,但证明更难制造。唯一设计用于支持顺序浸润合成(SIS)过程,Arradiance的Gemstar TM ALD系统比常规ALD降低了反应温度,更高的反应压力和更长的反应时间。这使前体气体能够在3D聚合物基质内浸润并在深处反应,从而确保没有降解,材料损失或脱气。
瑞士联邦材料科学技术实验室(EMPA)的科学家的这份新报告强调,与(1)和(2)相关的容量损失可以通过创建人工阴极电解质相(CEI)层来减轻。他们使用分子层沉积(MLD)将岩石酮层直接生长到多孔的NMC811粒子电极上。在这项工作中,将岩石酮层与锂丁氧化锂(Liotbu)和乙二醇作为前体沉积,在Arradiance Gemstar TM TM XTM XT-P反应器中,偶联,与Argon-Flove Box偶联,在低反应器温度下,以避免了电极温的热降解。在基于Si晶片的高射线比结构上的膜厚度覆盖率从210nm线性下降到20:1纵横比的30-40Nm,这是尝试对该技术进行商业化的重要工程变量。尝试在实际电极上,碳颗粒的聚集(以NMC811颗粒之间提供电子接触)阻碍了MLD均匀的生长,从而导致岩石酮覆盖率较小。