摘要 — 3D 集成技术在半导体行业得到广泛应用,以抵消二维扩展的局限性和减速。高密度 3D 集成技术(例如间距小于 10 µ m 的面对面晶圆键合)可以实现使用所有 3 个维度设计 SoC 的新方法,例如将微处理器设计折叠到多个 3D 层上。但是,由于功率密度的普遍增加,重叠的热点在这种 3D 堆叠设计中可能是一个挑战。在这项工作中,我们对基于 7nm 工艺技术的先进、高性能、乱序微处理器的签核质量物理设计实现进行了彻底的热模拟研究。微处理器的物理设计被分区并以 2 层 3D 堆叠配置实现,其中逻辑块和内存实例位于不同的层(逻辑位于内存上的 3D)。热仿真模型已校准到采用相同 7nm 工艺技术制造的高性能、基于 CPU 的 2D SoC 芯片的温度测量数据。模拟并比较了不同工作负载条件下不同 3D 配置的热分布。我们发现,在不考虑热影响的情况下以 3D 方式堆叠微处理器设计会导致在最坏情况下的功率指示性工作负载下,最高芯片温度比 2D 芯片高出 12°C。这种温度升高会减少在需要节流之前运行高功率工作负载的时间。但是,逻辑在内存上分区的 3D CPU 实现可以将这种温度升高降低一半,这使得 3D 设计的温度仅比 2D 基线高 6°C。我们得出结论,使用热感知设计分区和改进的冷却技术可以克服与 3D 堆叠相关的热挑战。索引术语 —3D 堆叠、面对面、热
024是北欧半导体的关键年份。自从我们的新管理团队从一月份开始工作以来,我们已经提高了战略重点,增强了工程执行并加强了整个组织的问责制(请参见Cover Featural PG12)。结果已经很明显:北欧不仅与市场保持同步 - 还设定了标准。在公司的战略目标市场中 - 消费者,互联健康,工业自动化和Edge AI - 短期无线电解决方案的潜力是巨大的。短期无线是北欧的增长引擎,也是物联网和工业物联网的基础。根据一系列行业分析师的选择,该市场正在迅速扩展 - 仅蓝牙LE在2024年达到18亿芯片货物后,预计在未来五年内将以20%的复合年增长率增长。北欧的研发和工程团队努力工作,以维持公司在短期无线技术方面的领先地位。去年11月在Electronica的NRF54L系列中推出了三个新设备,NRF54L15,NRF54L10和NRF54L05是北欧领导力和创新的证明。这一下一代无线SOC提供了无与伦比的性能和能力,满足了物联网应用程序广泛市场的不同需求和需求。随着NRF54L系列和即将推出的NRF54H系列,他们准备在今年晚些时候提供更高的性能,北欧正在重新定义蓝牙LE和短期无线创新中的可能性。在本版的WQ中,您可以阅读该公司创新的动力如何为在消费者,医疗保健和工业物联网中开创性的物联网解决方案铺平道路。北欧不仅领导着短期无线市场,还塑造了跨蜂窝物联网,云服务,低功率Wi-Fi和电力管理的低功率无线连接的未来。
高速计算机和无线通信系统的抽象在电子市场中变得越来越流行,这些面向通信的产品需要高包装密度,时钟速率和更高的GB/s开关速度。在这项工作中表征了用于以1 GB/s运行的应用程序的多层翻转球网阵列(FCBGA)软件包。包装的电特性超出了1 GHz的必要性。在本文中,我们介绍了使用时域反射测量法(TDR)方法互连FCBGA软件包的测量和仿真结果。模拟和测量结果,以建立适当的FCBGA互连电路模型。电力网络的寄生虫可以通过TDR,矢量网络分析仪(VNA)和阻抗分析仪(IA)来测量。这项工作中生成的完整模型针对的是在商业电子应用中具有广泛用途的高速系统片(SOC)设备。关键字翻转芯片球网格阵列(FCBGA),电特性,时域反射仪(TDR),矢量网络分析仪(VNA),片上系统(SOC)1。简介半导体的国际技术路线图(ITRS)驱动程序章节介绍了未来半导体行业发展的总体SOC环境[1]。它处理大型功能块,例如RF,CPU,硬件元素(数字和模拟/混合信号块),软件元素,胶水逻辑,功能特定内核,通信接口和软件堆栈,作为可重复使用的和预验证的组件。这些组件可以插入许多不同的SOC中,这是减少必须完成新产品必须完成的低级设计工作量的一种方法[2] [3]。虽然预计通信市场将保持显着的频率线索,但高速序列方案的渗透到微处理器,ASIC和SOC市场的形式
摘要 IEC 61508 是国际电工委员会发布的一项适用于工业领域的国际标准。其标题为《电气/电子/可编程电子安全相关系统(E/E/PE 或 E/E/PES)的功能安全》。它是一个适用于所有行业的基本功能安全标准。它将功能安全定义为:“与 EUC(受控设备)和 EUC 控制系统相关的整体安全的一部分,它依赖于 E/E/PE 安全相关系统、其他技术安全相关系统和外部风险降低设施的正确运行。”然而,IEC 61508 并不太适合汽车开发,而且经常受到不同的解释。而且很难将其与传统的汽车工程 V 方法保持一致。ISO 26262 是专门针对汽车行业的国际标准。它适用于与安全相关的道路车辆电子和电气 (E/E) 系统,并解决因故障而导致的危害。危害分析和风险评估确定 ASIL 和安全目标。考虑危害分析和 ASIL 分类,我们得到软件和硬件的要求。功能测试用于制造结束测试、进货检验、现场(或现场)测试。现场测试对于安全关键系统尤其重要。基于软件的自测试 (SBST) 是一种针对处理器和片上系统 (SoC) 的特殊功能测试。ISO 26262 中有一些可靠性工程方法:故障模式和影响分析 (FMEA)、硬件架构指标。故障模式和影响分析 (FMEA) 是一种旨在识别问题的系统技术。这是一种自下而上的方法,用于识别潜在故障。用于分析中使用的材料和方法。瑞萨 TB-S5D5 目标板应用于汽车案例研究。从系统级角度来看,有两种方法可以检查嵌入式系统的硬件设计:手工和自动 FMEA 结果比较。硬件设计的验证应用于 Simulink 环境中。这里考虑使用微控制器来构建整个系统。ISO26262 硬件开发包含硬件评估、硬件架构指标。分析完指标后,可以轻松获得目标 ASIL。故障注入技术也被广泛用于评估系统对故障的敏感性。
会议:•Yu Zeng,Bo-Yuan Huang,Hongce Zhang,Aarti Gupta,Sharad Malik,从RTL设计中产生建筑级别的处理器,用于处理器和加速器的RTL设计,第一部分:确定建筑变量的建筑变量,在计算机上设计(ICCAD),ICCAD(ICCAD),ICCAD•MAKEAI MAKIAN MAKIEN LONS,AHMEDERIAI,AHMEDERIAL LONS,AHMEDERIAL LONS,AHMED AHMEDERIAL LONS,AHMED AHMED AHMED AHMED AHMED AHMED AHMED AHMED AHMED AHMED AHMED MARGAIN Yang, Hongce Zhang , Kristopher Brown, Aarti Gupta and Clark Barrett, Pono: A Flexible and Extensible SMT-based Model Checker, in Computer-aided Verification (CAV) , 2021 • Hongce Zhang , Aarti Gupta and Sharad Malik, Syntax-Guided Synthesis for Lemma Generation in Hardware Model Checking, in Verification Model Checking and Abstract解释(VMCAI),2021。•Hongce Zhang,Maxwell Shinn,Aarti Gupta,Arie Gurfikel,Nham Le和Nina Narodytska,通过可及性分析进行认知任务的复发性神经网络的验证,在欧洲人工智能(ECAI)的欧洲大会上,2020年。•Nina Narodytska,Hongce Zhang,Aarti Gupta和Toby Walsh,在国际学习表现会议(ICLR)中寻找卫星友好的二进制神经网络建筑(ICLR),2020年。•Hongce Zhang,Weikun Yang,Grigory Fedyukovich,Aarti Gupta和Sharad Malik,在验证模型检查和抽象解释(VMCAI)中,用于模块化硬件验证的环境不变性(VMCAI),2020年。Bo-Yuan Huang,Hongce Zhang,Aarti Gupta和Sharad Malik,Ilang:SOC的建模和验证平台,使用指令级抽象,用于系统构建和分析的工具和算法(TACAS)(TACAS),2019年。Bo-Yuan Huang,Hongce Zhang,Aarti Gupta和Sharad Malik,Ilang:SOC的建模和验证平台,使用指令级抽象,用于系统构建和分析的工具和算法(TACAS)(TACAS),2019年。•Hongce Zhang,Caroline Trippel,Yatin A. Manerkar,Aarti Gupta,Aarti Gupta,Margaret Martonosi和Sharad Ma-Maik,Ila-MCM:Ila-MCM:将记忆一致性模型与指导级抽象与异构系统 - chiper-chip chip chip verii chiperifienforcation in-in-chiperforcation in-in-chip-chip-chiperforcation in Sumper-nor-clander/in gramcaded in of Computer-aver-aver-aver-aver-aver-aver>•Jangseop Shin,Hongce Zhang,Jinyong Lee,Ingoo Heo,Yu-Yuan Chen,Ruby B. Lee和Yunheung Paek,这是一种基于硬件的技术隐性信息流动跟踪,在国际计算机辅助设计(ICCAD)的国际会议上(ICCAD),2016
专用集成电路 (ASIC) 信号处理器对于实现现代应用的高性能和低功耗要求必不可少,但较长的开发时间是导致其采用率下降的一个障碍。其开发时间的很大一部分用于架构的设计和验证,其余部分则用于后端 ASIC 流程工作和芯片测试。敏捷硬件原则借鉴了类似的成功软件方法,以前应用于通用处理器,为继续开发片上信号处理系统 (SoC) 提供了一种有前途的解决方案。本文提出了一个数字信号处理 SoC 设计框架,该框架与敏捷设计原则相结合,支持快速原型设计和设计用于信号处理应用的 ASIC。首先,第 2 章探讨和分析了应用程序和现有的 ASIC 解决方案,以收集有用的属性和趋势。据此,第 3 章提出了一个通用信号处理 SoC 的模型。接下来,第 4 章介绍了一种新的 Chisel 生成器设计框架。Chisel 是一种用 Scala 编写的 DSL 硬件构造语言,允许在设计硬件时使用高级和函数式编程。该框架将通用处理器与信号处理加速器结合在一起,并提供了许多用于连接、内存映射和编程的库代码。当与敏捷设计流程相结合时,该框架支持 ASIC 的快速开发。加速器执行流信号处理以减轻 CPU 的高吞吐量计算内核负担。随着所需应用程序的处理单元的产生,处理从 CPU 转移到加速器。低速率处理任务在 CPU 上计算,这意味着流片按时进行并产生能够执行整个应用程序的工作芯片。第 5 章和第 6 章在两个独立的芯片上验证了该方法和提出的敏捷设计流程,涵盖两个应用程序和两个流程节点。 ASIC 谱仪 (Splash2) 的 RTL 由一个人在八周内设计完成,展示了 Chisel 快速构建处理元素生成器的强大功能。然后根据物理设计和时间线约束改进这些生成器并调整参数
ReRAM 在新兴 NVM 中占据领先地位 在之前的研究报告(可在此处查阅)中,我们讨论了 ReRAM 如何优于现有的闪存技术以及其他竞争的新兴非易失性存储器 (NVM) 技术,这些技术正在争夺闪存的份额。电子设备需要一种能够在越来越小的工艺尺寸下提供卓越性能的技术,同时将增量成本降至最低,而 WBT 的 ReRAM 恰恰具备这种优势。去年,台积电宣布将使用 ReRAM,这进一步凸显了 ReRAM 的重要性,人们猜测 ReRAM 正用于当今的电子设备,包括 Apple 的最新款 iPhone。台积电的竞争对手(如 UMC 和 GlobalFoundries)几乎没有可行的 ReRAM 替代品,但似乎没有哪一种是可供其他代工厂和 IDM 使用的独立产品。开发路线图是一个三级火箭 WBT 的 ReRAM 技术的初始应用将用于嵌入式存储器,其中 SoC(片上系统)需要板载 NVM。嵌入式 ReRAM 目前正在通过 SkyWater 进行商业化,并且还应通过与一级代工厂的许可协议进行扩展。第二阶段是分立(或独立)ReRAM,即独立内存芯片。WBT 正在研究两种变体;带有和不带有高级选择器的变体。较大阵列中的 ReRAM 需要高级选择器,而较小容量的 ReRAM 芯片可以使用现有的简单晶体管作为选择器进行管理。我们预计分立 ReRAM 芯片将在未来几年内上市,首先从较小容量的芯片开始。第三阶段是将 ReRAM 应用于神经形态处理,例如使用脉冲神经网络,但这是公司的一个长期项目。估值为每股 9.56 澳元我们之前对 WBT 的估值为 6.10 澳元,现已达到并超过该估值。考虑到该公司在 2023 年迄今取得的进展以及 2023 年剩余时间和 2024 年的预期新闻流,我们认为 WBT 与 eMemory 等同行的估值差距可能会在未来 12 个月内缩小。基于此,我们认为 WBT 的估值应为每股 9.56 澳元,这意味着比当前股价有 43% 的上涨空间。请参阅第 16 页的主要投资风险。
Oppstar 主要提供集成电路 (IC) 设计服务,涵盖前端设计、后端设计和根据客户规格提供的完整交钥匙解决方案。该集团主要使用 20nm 至 3nm 的先进工艺节点技术设计专用集成电路 (ASIC)、片上系统 (SoC)、中央处理器 (CPU) 和现场可编程门阵列 (FPGA),用于电信、汽车、工业和消费电子等各个行业。IC 设计部门在 2022 年贡献了其年收入的 99% 以上。此外,它还提供其他相关服务,例如硅后验证服务、培训和咨询服务,占其总收入的不到 1%。Oppstar 在槟城、吉隆坡和上海租用办公室运营,客户来自多个国家(主要是中国),其客户主要包括集成设备制造商、无晶圆厂公司、轻晶圆厂公司、电子系统提供商和其他 IC 设计公司。它已完成特定于代工厂的 IC 设计项目,因为每个代工厂工艺都有自己的一套设计规则。它设计的一些 IC 由世界领先的代工厂制造,例如台积电、三星半导体、英特尔和 Global Foundries Inc. 2022 年,Oppstar 与 Sophic Automation 签订了战略合作伙伴协议,以利用 Sophic Automation 的工程资源和客户群进一步加强其在硅后验证服务方面的产品。由于其业务性质依赖于熟练的人员,其劳动力成本占总销售成本的 90% 以上,其目前 217 名设计工程师的利用率在 FPE2022 达到 85.17%。作为确保未来设计工程师劳动力的努力的一部分,该集团目前与 5 所高等院校合作,制定了一个结构化的计划,通过研发、行业讲座、现场培训、训练营、实习等活动培养知识型员工并提供就业机会。 Oppstar 的订单价值约为 3429 万令吉,主要包括交钥匙设计服务,预计将在未来 12 个月内确认。
征集创新和原创论文的主题领域包括(但不限于):模拟:具有模拟主导创新的电路;放大器、比较器、振荡器、滤波器、参考电路;非线性模拟电路;数字辅助模拟电路;传感器接口电路;MEMS 传感器/执行器接口、10nm 以下技术的模拟电路。数据转换器:奈奎斯特速率和过采样 A/D 和 D/A 转换器;嵌入式和特定应用的 A/D 和 D/A 转换器;时间到数字转换器;创新和新兴的转换器架构。数字电路、架构和系统*:微处理器、微控制器、应用处理器、图形处理器、汽车处理器、机器学习 (ML) 和人工智能 (AI) 处理器以及片上系统 (SoC) 处理器的数字电路、架构、构建模块和完整系统(单片、小芯片、2.5D 和 3D)。用于通信、视频和多媒体、退火、优化问题解决、可重构系统、近阈值和亚阈值系统以及新兴应用的数字系统和加速器。用于处理器的芯片内通信、时钟分配、软错误和容错设计、电源管理(例如稳压器、自适应数字电路、数字传感器)和数字时钟电路(例如 PLL、DLL)的数字电路。数字 ML/AI 系统和电路,包括近内存和内存计算以及针对新 ML 模型(如 Transformer、图形和脉冲神经网络以及超维计算)的硬件优化。图像传感器、医疗和显示:图像传感器;视觉传感器和基于事件的视觉传感器;汽车、激光雷达;超声波和医学成像;可穿戴、可植入、可摄取设备;生物医学传感器和 SoC、神经接口和闭环系统;医疗设备;微阵列;体域网络和身体耦合通信;用于医疗和成像应用的机器学习和边缘计算;显示驱动器、触摸感应;触觉显示器;用于 AR/VR 的交互式显示和传感技术。存储器:用于独立和嵌入式应用的静态、动态和非易失性存储器;存储器/SSD 控制器;用于存储器的高带宽 I/O 接口;基于相变、磁性、自旋转移扭矩、铁电和电阻材料的存储器;阵列架构和电路,以改善低压操作、降低功耗、可靠性、性能改进和容错能力;内存子系统内的应用特定电路增强、用于 AI 或其他应用的内存计算或近内存计算宏。电源管理:电源管理、电源输送和控制电路;使用电感、电容、和混合技术;LDO /线性稳压器;栅极驱动器;宽带隙(GaN / SiC);隔离和无线电源转换器;包络电源调制器;能量收集电路和系统;适用于汽车和其他恶劣环境的强大电源管理电路;LED驱动器。射频电路和无线系统**:用于接收器、发射器、频率合成器、射频滤波器、收发器、SoC和包含多个芯片的无线 SiP 的射频、毫米波和 THz 频率的完整解决方案和构建模块。创新电路、系统、设计技术、异构封装解决方案等,适用于既定的无线标准以及未来系统或新应用,例如传感、雷达和成像,以及提高频谱和能源效率的应用。安全:展示加密加速器的芯片(例如加密、轻量级加密、后量子加密、隐私保护计算、区块链)、智能卡安全、可信/机密计算、安全电路(例如 PUF、TRNG、侧信道和故障攻击对策、用于攻击检测和预防的电路和传感器)、资源受限系统的安全性、安全微处理器、安全存储器、模拟/混合信号电路安全(例如安全 ADC/DAC、RF、传感器)、安全供应链(例如硬件木马对策、可信微电子)、新兴技术的安全性以及用于逻辑/物理级安全的核心电路级技术。技术方向:集成光子学、硅电子-光子学集成等各个领域的新兴和新型 IC、系统和设备解决方案;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。RF 电路和无线系统**:用于接收器、发射器、频率合成器、RF 滤波器、收发器、SoC 和包含多个芯片组的无线 SiP 的 RF、毫米波和 THz 频率的完整解决方案和构建模块。创新电路、系统、设计技术、异构封装解决方案等,适用于既定的无线标准以及未来系统或新应用,例如传感、雷达和成像,以及那些可提高频谱和能源效率的应用。安全:展示加密加速器的芯片(例如加密、轻量级加密、后量子加密、隐私保护计算、区块链)、智能卡安全、可信/机密计算、安全电路(例如 PUF、TRNG、侧信道和故障攻击对策、用于攻击检测和预防的电路和传感器)、资源受限系统的安全性、安全微处理器、安全存储器、模拟/混合信号电路安全(例如安全 ADC/DAC、RF、传感器)、安全供应链(例如硬件木马对策、可信微电子)、新兴技术的安全性以及用于逻辑/物理级安全的核心电路级技术。技术方向:集成光子学、硅电子-光子学集成等各个领域的新兴和新型 IC、系统和设备解决方案;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。RF 电路和无线系统**:用于接收器、发射器、频率合成器、RF 滤波器、收发器、SoC 和包含多个芯片组的无线 SiP 的 RF、毫米波和 THz 频率的完整解决方案和构建模块。创新电路、系统、设计技术、异构封装解决方案等,适用于既定的无线标准以及未来系统或新应用,例如传感、雷达和成像,以及那些可提高频谱和能源效率的应用。安全:展示加密加速器的芯片(例如加密、轻量级加密、后量子加密、隐私保护计算、区块链)、智能卡安全、可信/机密计算、安全电路(例如 PUF、TRNG、侧信道和故障攻击对策、用于攻击检测和预防的电路和传感器)、资源受限系统的安全性、安全微处理器、安全存储器、模拟/混合信号电路安全(例如安全 ADC/DAC、RF、传感器)、安全供应链(例如硬件木马对策、可信微电子)、新兴技术的安全性以及用于逻辑/物理级安全的核心电路级技术。技术方向:集成光子学、硅电子-光子学集成等各个领域的新兴和新型 IC、系统和设备解决方案;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。以及提高频谱和能源效率的芯片。安全:展示加密加速器的芯片(例如加密、轻量级加密、后量子加密、隐私保护计算、区块链)、智能卡安全、可信/机密计算、安全电路(例如 PUF、TRNG、侧信道和故障攻击对策、用于攻击检测和预防的电路和传感器)、资源受限系统的安全性、安全微处理器、安全存储器、模拟/混合信号电路安全(例如安全 ADC/DAC、RF、传感器)、安全供应链(例如硬件木马对策、可信微电子)、新兴技术的安全性以及用于逻辑/物理级安全的核心电路级技术。技术方向:集成光子学、硅电子-光子学集成等各个领域的新兴和新型 IC、系统和设备解决方案;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。以及提高频谱和能源效率的芯片。安全:展示加密加速器的芯片(例如加密、轻量级加密、后量子加密、隐私保护计算、区块链)、智能卡安全、可信/机密计算、安全电路(例如 PUF、TRNG、侧信道和故障攻击对策、用于攻击检测和预防的电路和传感器)、资源受限系统的安全性、安全微处理器、安全存储器、模拟/混合信号电路安全(例如安全 ADC/DAC、RF、传感器)、安全供应链(例如硬件木马对策、可信微电子)、新兴技术的安全性以及用于逻辑/物理级安全的核心电路级技术。技术方向:集成光子学、硅电子-光子学集成等各个领域的新兴和新型 IC、系统和设备解决方案;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。硅电子-光子集成;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。硅电子-光子集成;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。
创新和原始论文在主题领域中被征求来,包括(但不限于):模拟:具有模拟主导创新的电路;放大器,比较器,振荡器,滤纸,参考;非线性模拟电路;数字辅助模拟电路;传感器接口电路; MEMS传感器/执行器接口,低于10nm缩放技术中的模拟电路。数据转换器:nyquist速率和过采样A/D和D/A转换器;嵌入式和应用特异性A/D和D/A转换器;时间数字转换器;创新和新兴转换器体系结构。数字电路,体系结构和系统*:微处理器,微控制器,应用程序处理器,图形处理器,图形处理器,自动化处理器,机器学习(ML)和ARTIIFICIL(MORIFIFIFICERCENCES(SOCIC)和ARIFIFIFIFIFICENCESS(MOR)和ARIFIFIFIFIFIFICENCESS(MIC)和ARSIECENCES(MONIFICENCESS(a),数字电路,体系结构和系统*:数字电路,架构,构件,构件和完整系统(单片,chiplets,2.5D和3D)用于通信,视频和多媒体,退火,优化问题解决,重新选择系统的数字系统和加速器,接近和子阈值系统以及新兴应用程序。用于芯片内通信,时钟分布,软校园和耐变性设计的数字电路,电源管理(例如电压调节器,适应性数字电路,数字传感器)和数字时钟电路(例如,PLL,PLL,DLL,DLL)用于处理器。数字ML/AI系统和电路,包括新的ML模型,例如变形金刚,图形和尖峰神经网络以及超维计算的新型ML模型,包括近存储器和内存计算以及硬件优化。成像仪,医疗和显示:图像传感器;视觉传感器和基于事件的视觉传感器;汽车,LIDAR;超声和医学成像;可穿戴,可植入的,可耐用的设备;生物医学传感器和SOC,神经界面和闭环系统;医疗设备;微阵列;身体区域网络和身体耦合沟通;用于医疗和成像应用的机器学习和边缘计算;显示驱动程序,触摸感应;触觉显示; AR/VR的交互式显示和传感技术。内存:独立和嵌入式应用程序的静态,动态和非易失性记忆;内存/SSD控制器;高带宽I/O界面的回忆;基于相变,磁性,自旋转移扭矩,铁电和电阻材料的记忆;阵列体系结构和电路,以改善低压操作,降低功率,可靠性,提高性能和容错性;存储子系统中的应用特异性电路增强,用于AI或其他应用程序的内存计数或接近内存计算宏。电源管理:电源管理,电力传递和控制电路;使用电感,电容和混合技术进行切换模式转换器IC; LDO/线性调节器;门司机;宽带gap(gan/sic);隔离和无线电源转换器;信封供应调节器;能源收集电路和系统;适用于汽车和其他恶劣环境的强大电源管理电路; LED驱动程序。RF电路和无线系统**:RF,MM-WAVE和THZ频率的完整解决方案和构件,用于接收器,发射机,频率合成器,RF滤波器,收发器,SOCS和无线sips,并结合了多个chiplets。创新电路,系统,设计技术,异质包装解决方案等。用于已建立的无线标准以及未来的系统或新颖的应用,例如传感,雷达和成像,以及那些提高光谱和能量效率的应用程序。安全性:芯片展示加密加速器(例如,加密,轻度加密,Quantum Crypto,Quantum Crypto,隐私保护计算,区块链),智能卡安全性,可信赖/确定计算,确定性计算,安全循环(例如,安全循环,pufs,pufs,trngs,trngs,trngs,trngs offirention offertion offertion攻击),越来越多的攻击性攻击),该攻击性攻击性攻击性,并构成了攻击),该攻击性攻击性,越来越多的攻击),互联网和指示,攻击性,并构成了攻击),该攻击性攻击性,互联网和指标,互联网和指示,攻击性,互联网和指示。对于资源受限的系统,安全的微处理器,安全的记忆,模拟/混合信号电路安全性(例如,安全的ADC/DAC,RF,传感器),安全供应链(例如,硬件Trojan对策,可信赖的微电子电源),具有/核心技术的安全性和核心电路技术的安全性,以供型号/核心循环技术。技术方向:在各个领域的新兴和新颖的IC,系统和设备解决方案,例如集成光子学,硅电子 - 光子学集成;计量,传感,计算等量子设备。;灵活,可拉伸,可折叠,可打印和3D电子系统;细胞和分子靶标的生物医学传感器;无线功率传递距离(例如,RF和MM波,光学,超声波);用于空间应用和其他恶劣环境的IC;非电视计算和机器学习的新颖平台;集成的元物质,替代设备平台中的电路(例如碳,有机,超导体,自旋等)。有线:电线系统的接收器/发射机/收发器,包括背板收发器,铜钟链接,芯片到芯片通信,2.5/3D互连,芯片/包装链接,包装链接,高速接口,用于内存;光学链路和硅光子学;探索性I/O电路,用于提高数据速率,带宽密度,功率效率,均衡,稳健性,适应能力和设计方法;有线收发器的构建块(包括但不限于AGC,模拟前端,ADC/DAC/DSP,TIAS,TIAS,均衡器,时钟生成和分配电路,包括PLL/DLLS,时钟恢复,线驱动程序,驱动器和混合动力车)。