摘要:通过减少二氧化碳纤维细纹来降低温室效应的必要性,指示食品包装技术使用生物基材料。藻酸盐是源自棕色藻类物种的,是开发能够保护食物免受氧化/细菌变质的可食用活性涂层的最有希望的生物聚合物之一。在这项研究中,藻酸钠用甘油塑化并与生物基的百里香醇/天然霍洛伊石纳米杂交混合,用于开发新型的可食用活性涂层。纳米复合材料也是通过将纯喇叭岩与藻酸钠/甘油基质混合并出于比较原因将其用作参考材料的。仪器分析表明,与纯藻酸钠/甘油基质相比,百里香/hoy虫纳米杂化与藻酸钠/甘油基质相比具有更高的兼容性。提高兼容性导致拉伸特性,水/氧屏障特性和总抗氧化活性。与未涂层的奶酪相比,这些可食用的活性涂层被应用于传统的希腊奶酪,并在一个log10单元(CFU/g)上显示中介微生物种群的减少。此外,随着梭子石和百里醇含量的增加,中嗜微生物种群的减少增加,表明这种藻酸钠/甘油/百里香醇/甲醇/hay虫水凝胶是奶牛产物的有希望的可食用的活性涂层。
源自生物质废物资源的硬碳(例如燕麦片,稻壳,甘蔗渣,香蕉皮,花生贝壳,苹果Pomace和Corncob)受到了广泛的关注,这是由于可逆的能力以及成本和可持续性考虑因素。[6–12]碳化后生物质的自然微观结构保留在碳化后,提供大量的缺陷和毛孔以及随机取向的假含量结构域。[13]固有的通道和孔创建了相互联系的3D结构,可改善电解质渗透,并提供更多的钠途径和离子缓冲库。[14]此外,一些剩余的杂原子(N,S,P等)可以通过直接的电动积极共价键或引入发起电子受体状态的碳空位缺陷来提供更多的存储位点。[15]
该期刊文章的自存档后印本版本可在林雪平大学机构知识库 (DiVA) 上找到:https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-196935 注意:引用该作品时,请引用原始出版物。An, X., Wei, T., Ding, P., Liu, L., Xiong, L., Tang, J., Ma, J., Wang, F., Liu, H., Qu, J., (2023), Sodium- Directed Photon-Induced Assembly Strategy for Preparing Multisite Catalysts with High Atomic Utilization Efficiency, Journal of the American Chemical Society , 145(3), 1759-1768。https://doi.org/10.1021/jacs.2c10690
来自生物质废弃物资源(如燕麦、稻壳、甘蔗渣、香蕉皮、花生壳、苹果渣和玉米芯)的硬碳因优异的可逆容量以及成本和可持续性考虑而受到广泛关注。[6–12] 生物质的天然微观结构在碳化后依然存在,提供大量缺陷和孔隙以及随机取向的伪石墨域。[13] 固有的通道和孔隙创建了相互连接的 3D 结构,改善了电解质的渗透并提供更多的钠通道和离子缓冲库。[14] 此外,一些剩余的杂原子(N、S、P 等)可以通过直接电化学活性共价键或通过引入产生电子受体态的碳空位缺陷来提供更多的储存位点。[15]
钠电池技术利用钠离子进行能量的储存和释放,与锂离子电池相比,钠电池具有成本低、安全性高、高低温性能好、循环寿命长等优势,在低速电动汽车、储能领域有着广泛的应用前景。
在十年前首次引入钠 - 葡萄糖共转移蛋白-2(SGLT2)抑制剂时,没有人期望它们超出其已知降解葡萄糖的影响,直到出现出来的肾上管和心排血管益处的证据出现,直到他们可能会逐渐受到疾病的发展,因为他们可以逐渐受到疾病的发展,因为他们会逐渐受到疾病的影响,因为它会迅速发展,因此,他们会逐渐受到验证。仍然,SGLT2抑制剂主要器官保护基础的确切和精心的机制尚不清楚。sGLT2抑制剂抑制肾脏近端小管中钠和葡萄糖的重吸收,然后恢复块状细胞的反馈,从而减少SGLT2抑制剂,从而减少肾小球过滤。对其受益效应的这种简单证明使专家令人困惑,在寻求更合理的和尚未公开的解释,以解释SGLT2 IN-HIBITOR的全部影响,包括新陈代谢重编程以及低氧,炎症,炎症和氧化应激的调节。鉴于SGLT2抑制剂在肾脏疾病患者中的收益益处与糖尿病患者中看到的糖尿病的益处相当,因此将重点放在其血液动力学作用上可能是合理的。在这种情况下,本综述的目的是在接受SGLT2抑制剂治疗的糖尿病患者的肾脏血液动力学概述中,重点侧重于与微管胶质细胞反馈和潜在水样相关的NATRIURESIS。在整个肾脏钠和水转运的改变过程中,尤其要注意SGLT2抑制后腺苷及其受体的潜在增强。
对钠(NA)电池作为大规模储能的候选者的大部分吸引力源于以下事实:作为地球地壳中第六大元素,是海洋中第四大元素,它是一种廉价且全球可访问的商品。NA电池的重大研究和开发可以追溯到50多年来。熔融NA电池始于钠硫(NAS)电池,作为1960年代后期的潜在高温电源[1]。在1970年代,NAS电池由钠金属卤化物电池(NAMH:例如,钠氯化钠),也称为Zebra电池(Zeolite Batterion Africa Project或最近,Zero Zero Powtery Project,ZERO RESSICTION POUNTICE TAUMPTION),也随着心理运输的应用[2]。钠离子电池(NAIB)最初是在1980年代与锂离子电池(LIB)大致开发的。但是,电荷/放电速率,可环性,能量密度和稳定的电压曲线的局限性使它们在历史上比基于锂基的竞争力不那么竞争[3]。最近,固态钠电池(SSSB)已经开始成为候选商业产品,尽管目前尚未确定它们对大规模,长期存储的适用性[4]。
目的:描述钠 - 葡萄糖共转运蛋白2抑制剂的效率和安全性是针对小时的实际人群中与蒽环类药物相关的心脏功能障碍的特定治疗方法。方法:在引入钠 - 葡萄糖共转运蛋白2抑制剂之前和之后,对七名患有蒽环类药物相关的心脏功能障碍的患者进行了临床和超声心动图评估。结果:经过24周的中位数,不间断的钠 - 葡萄糖共转移蛋白2抑制剂治疗,观察到明显的临床改善,并且至少一个纽约心脏联想功能类(NHYA FC)改善了所有患者(中位数NYHA FC:I VS. III VS. III,P <0.010)。值得注意的左心室储备重塑(中值左心室舒张体积:53 vs. 82.5 ml/m 2,p = 0.018;中位左心室射血分数:50%vs. 40%vs. 40%,p = 0.17)。葡萄糖共转运蛋白2抑制剂治疗均受了每位患者的耐受性;未观察到中断或相关副作用的病例。结论:钠 - 葡萄糖共转移蛋白2抑制剂可引起显着的临床改善,并在受蒽环类药物相关的心脏功能障碍影响的患者中进行了显着的临床改善和左心室储备重塑。
摘要 目的 抗癫痫和抗心律失常药物抑制电压门控钠 (Na +) 通道 (VGSC),临床前研究表明这些药物可减少肿瘤生长、侵袭和转移。我们研究了乳腺癌、肠癌和前列腺癌患者使用 VGSC 抑制剂与生存期之间的关联。设计回顾性队列研究。设置从临床实践研究数据链接中提取的个人电子初级医疗保健记录。参与者 132 996 名被诊断为乳腺癌、肠癌或前列腺癌的患者的记录。结果测量调整后的 Cox 比例风险回归用于分析与接触 VGSC 抑制剂相关的癌症特异性生存期。还考虑了非 VGSC 抑制抗癫痫药物和其他非 VGSC 阻滞剂的暴露。药物暴露被视为时变协变量,以解释永恒时间偏差。结果 在 1 002 225 人年的随访中,共有 42 037 人死于癌症。53 724 名(40.4%)癌症患者至少开过一次 VGSC 抑制剂处方。癌症死亡风险的增加与接触此类药物有关(HR 1.59,95% CI 1.56 至 1.63,p<0.001)。这适用于 VGSC 抑制三环抗抑郁药(HR 1.61,95% CI 1.50 至 1.65,p<0.001)、局部麻醉药(HR 1.49,95% CI 1.43 至 1.55,p<0.001)和抗惊厥药(HR 1.40,95% CI 1.34 至 1.48,p<0.001),并且在敏感性分析中持续存在。相反,暴露于 VGSC 抑制 1c 类和 1d 类抗心律失常药物与癌症特异性生存率显著提高相关(分别为 HR 0.75,95% CI 0.64 至 0.88,p<0.001 和 HR 0.54,95% CI 0.33 至 0.88,p=0.01)。结论 VGSC 抑制剂的使用与癌症患者死亡率之间的关联因适应症而异。使用 VGSC 抑制性抗心律失常药物(而非抗惊厥药物)支持了临床前数据的结果,即生存率有所提高。然而,这些关联可能还存在其他混杂因素,这凸显了进一步研究的必要性。