摘要 - 集成的开发环境(IDE)在各种任务中为开发人员提供支持。在执行不同的编程任务时毫不客气地捕获开发人员的认知负载,可以帮助优化开发人员的工作经验,提高其生产率并积极影响代码质量。在本文中,我们提出了一项研究,其中基于Intellij的IDE插件Cognitide用于在处理各种软件开发任务时收集,映射和可视化软件开发人员的生理活动数据。在一项可行性研究中,参与者根据Java开源代码在IDE中完成了四个模拟软件开发人员的日常工作任务 - 编码,调试,代码文档和电子邮件写作,同时记录了他们的生理活动。 在任务之间,评估了参与者的感知工作量。 可行性测试表明,可以成功地将认知剂用于一小时的数据收集会话,这是测试最长的持续时间,并且对使用它的人非常感知。 此外,与基线记录相比,记录的生理活性表明在工作任务期间的认知负荷更高。 这表明可以评估认知负载,映射到代码位置,可视化和讨论在一项可行性研究中,参与者根据Java开源代码在IDE中完成了四个模拟软件开发人员的日常工作任务 - 编码,调试,代码文档和电子邮件写作,同时记录了他们的生理活动。在任务之间,评估了参与者的感知工作量。可行性测试表明,可以成功地将认知剂用于一小时的数据收集会话,这是测试最长的持续时间,并且对使用它的人非常感知。此外,与基线记录相比,记录的生理活性表明在工作任务期间的认知负荷更高。这表明可以评估认知负载,映射到代码位置,可视化和讨论
本文研究了安全至关重要的社会环境中日益增长的算法控制的张力 - 人类认知谬误的动力与AI的概率类型的兴起,主要是以大语言模型(LLMS)的形式形式。尽管人类认知和LLM都表现出固有的不确定性和偶尔的不可靠性,但对“奇异性”的某些未来视野在矛盾地辩护地倡导放弃对主要社会过程的控制 - 包括关键性过程 - 对这些概率的AI代理人,使这些概率的AI代理人的风险加剧了不可定制或“不可定制”的风险。作为替代方案,这里提出了一个“介导的控制”框架:一种更谨慎的替代方案,其中llm-agis从战略上被视为“元数据编程者”,以设计精致的基本确定性 - 等级 - 词汇和程序,或者,总的来说是确定性的,或一般而言。是这些算法或程序,在经典计算基础架构上以及在人类监督下执行,将要部署的系统基于人类的审议决策过程,这是关键系统和过程的实际控制者。这构成了一种利用算法创新的创造力的方法,同时保持了本质的可靠性,可预测性和人类对由如此生产的算法控制的过程的责任。框架强调了LLM-AGI与其设计算法之间的劳动分裂,严格的验证和验证协议作为安全算法生成的条件以及算法的介导应用。这种方法不能保证解决先进AI的挑战,但它被认为是一种更加与人类的,风险降低的,最终更有利于将AGI整合到社会治理中的更有益的途径,这可能会导致更安全的未来,同时维护人类自由和机构的基本领域。
摘要:在当前的工作中,设计,制造和测试了使用纳米复合材料和合成材料的新人造人类软心和人造心脏瓣膜的开发模型。检查了制造的机械人造心脏瓣膜,以确定每种类型的最佳使用寿命。通过在每个产生的值上使用瞬态重复并连续施加血压来模拟每个脉冲周期中自然心脏中发生的舒张期和收缩压,从而实现了疲劳寿命。获得的结果表明,实施了新一代软性人造心脏的3D打印作为永久替代品的替代品,以替代高成本可用的临时植入物机械心脏,该植入物可能会超过价格和数十万美元的价格,其工作寿命不超过五年。随着阀门运动部位运动的复杂性,使用不同材料和设计的生产人造阀获得的疲劳安全系数降低。在使用单向式扁平,简单运动的阀(如单叶型阀门)时,获得了最高速率,其中所有使用的材料都适合于生产此类阀门。达到了最高的安全系数(15)。使用高度柔韧性和强大的PSN4纳米复合材料来制造二尖瓣三叶叶阀(厚。= 1.0 mm)时,记录了最低速率。使用相同的类型和阀门时,此值降至0.99,但厚度等于0.5 mm。可以在这里注意到,唯一适合于这种人造阀类型的制造的是纳米复合材料聚醚酰亚胺/硅胶橡胶带有纳米二氧化硅(PSN4),而其他使用的材料失败了,因为疲劳因子值小于1。 div>。 div>。 div>。该材料的使用寿命约为9200 x 106周期,相当于大约290年,其次是SIBSTAR 103,默认年龄为209.6 x 106周期或9年。
4.1我有一个名为XYZ的应用程序,目的是使用系统中两个芯片组(PCH)设备的每个加密实例(总共四个实例)。配置文件会是什么样?............................................................................................................................................................................................................................................................ 21 4.2 cy name参数是否应在每个配置文件中使用唯一值?................................................................................................................................................................... 21 4.3 The firmware does not load.我该如何解决?...................................................................................................................................................................................................................................... 21 4.4当我尝试启动驱动程序时,我会看到与内存分配有关的错误(包括内核消息)。我该怎么做才能避免这种情况?....................................................... 21 4.5 When loading the package modules, I see kernel log warnings related to the signing of the modules.我需要做什么?.................................................................................................. 22 4.6 Why does Intel® QAT performance drop around buffer/packet sizes of 2kB?............... 22 4.7 I am receiving failures or hangs when sending perform requests to the Intel® QAT API after a fresh boot or after hotplug events.如何解决这些问题?............................ 22 4.8 How do I get the Intel® QAT driver to automatically start in SUSE Linux*?........................................................ 22
摘要 - 这项研究提出了一种创新的方法,可用于由四个可压缩肌腱驱动的软执行器启用的软四倍机器人的最佳步态控制。柔软的四足机器人与刚性的机器人相比,已广泛认可,可提供增强的安全性,较低的重量以及更简单的制造和控制机制。然而,它们的高度变形结构引入了非线性动力学,使得精确的步态运动控制复合物。为了解决这一问题,我们提出了一种基于模型的新型增强学习(MBRL)方法。该研究采用多阶段方法,包括国家空间限制,数据驱动的替代模型培训和MBRL开发。与基准方法相比,所提出的方法显着提高了步态控制策略的效率和性能。开发的策略既适合机器人的形态,既适合又有能力。这项研究结论是在实际情况下强调这些发现的实际适用性。索引术语 - 四倍的机器人,软执行器,增强学习,步态控制
摘要:本文介绍了基于电容性变化的低成本和多触摸传感器的新设计和开发。这个新传感器非常灵活且易于制造,使其成为软机器人应用程序的适当选择。该传感器中使用的材料(导电墨水,有机硅和控制板)是便宜且在市场上很容易找到的。提出的传感器由不同层的晶圆,带有导电墨水的硅胶层和压力敏感的导电纸片制成。像E-Skin这样的先前方法可以测量像人体或纤维等导电物体的接触点或压力,而所提出的设计使传感器能够检测物体的接触点和施加力,而无需考虑对象的材料电导率。传感器可以同时检测五个多点触点。在存在噪声,增益变化和非线性的情况下,使用神经网络结构以可接受的精度来校准施加力。通过商业精确力传感器(ATI)实时测量的力与通过在两个电极层之间更改层的电容获得的产生的电压映射。最后,嵌入建议的触觉传感器的软机器人抓手被用来掌握具有位置和力反馈信号的物体。
本文介绍了一种生物启发的气动软执行器,旨在模仿人手指的柔韧性运动运动,特别关注通过颗粒状干扰来调节刚度。三腔几何形状 - 蜂窝,矩形和中途 - 以优化曲率性能,利用霉菌星15慢速弹性体进行执行器制造。使用Chia和藜麦晶粒在不可扩展的层中实现了颗粒状干扰,以增强刚度调制。实验结果表明,蜂窝几何形状与天然食指轨迹最紧密地对齐。刚度评估Quinoa的范围为0 - 0.47 N/mm/°,CHIA的范围为0 - 0.9 N/mm/°。与非裁定配置相比,藜麦的执行力量的产量增加了16%,CHIA的力量增加了71%。这种增强的性能对于诸如手部康复等应用特别有益,在这种应用中,自适应刚度和力调节至关重要。颗粒状干扰,尤其是使用Active Chia,为需要可变的刚度和电阻的任务提供了卓越的适应性,使其成为可穿戴机器人应用康复的有前途的候选人。
面部软组织(FST)的具有里程碑意义的定位是对人体面部的3D形态分析的基本步骤,这对于面部畸形相关疾病的诊断和治疗非常重要。但是,几乎没有关于基于深度学习的3D扫描图像的地标定位的研究。由于非欧盟数据结构,无法直接使用基于2D图像的方法。在本文中,我们提出了一个端到端的学习框架,以自动将28个地标在3DMD扫描中定位,称为FST-NET。我们的方法从纹理图像和网格模型中提取特征。3DMD扫描的新纹理映射是通过投影对融合纹理和结构特征的投影而生成的。使用双分支网络集成变压器,以预测从粗到细的地标热图。提出了基于概率距离和热图预测的局部协调回归模块,以计算具有里程碑意义的协调。我们从诊所收集和注释300 3DMD面部扫描以评估我们的模型。实验表明,该模型的平均定位误差为1.204mm(临床上可接受的精度范围为1.5 mm),正确的地标检测率等于70.89%。我们的模型超过了网格模型上地标定位的当前最新深度学习方法。
摘要。随着物联网(IoT)今天推出,其寿命可能超过十年的设备,保守的威胁模型应考虑具有量子计算能力的对手。IETF指定的西装标准定义了用于物联网软件更新,标准化元数据和加密工具(数字签名和哈希功能)的安全体系结构,以确保更新合法的更新。西装性能已在量词前的文本中进行了评估,但尚未在量词后的情况下进行评估。以Riot中可用的诉讼的开源实施为案例研究,我们调查了量子后的注意事项,尤其是抗量子的数字签名,重点介绍了具有严格的内存,CPU和能量消耗限制的低功耗,基于微控制器的IoT设备。我们基准在一系列物联网硬件上进行一系列量子前和后量牌签名方案,包括ARM Cortex-M,RISC-V和Espressif(ESP32),这些方案构成了现代32位微控制器架构的大部分。在诉讼的背景下解释我们的基准,我们估计了从量词前签名到后签名过渡的现实影响。
摘要 - 近年来,自主驾驶技术的兴起强调了可靠软件在确保安全和性能方面的重要性。本文提出了一种使用多模式学习的自动驾驶软件系统中即时软件缺陷预测(JIT-SDP)的新方法。提出的模型利用了多模式变压器,其中预训练的变压器和组合模块与软件系统数据集的多个数据模式相结合,例如代码功能,更改指标和上下文信息。适应多模式学习的关键点是利用不同数据模式(例如文本,数值和分类)之间的注意机制。在组合模块中,在文本数据和包含分类数据和数值数据的表格数据和表格特征上的输出组合在一起,以使用完全连接的层产生预测。对从GitHub存储库(Apollo,Carla和Donkeycar)收集的三个开源自动驾驶系统软件项目进行的实验表明,拟议的方法显着超过了有关评估指标的最先进的深度学习和机器学习模型。我们的发现突出了多模式学习的潜力,以通过改进的缺陷预测来增强自主驾驶软件的可靠性和安全性。