保护农业(CA)被广泛推广为基于农业生态学的土壤保护方法。几项研究集中在撒哈拉以南非洲的CA对农作物产量和土壤水分动态的影响上,对CA对土壤有机碳(SOC)和相关分数的影响的关注有限。我们收集了马拉维以北的Mzimba区的30个配对农场的代表性土壤样品,以确定耕作和土壤深度对土壤物理化学特性,总SOC和有机碳分数的影响。未受干扰的土壤核心进行批量密度测量。使用土壤分馏方法确定不同的SOC池,而土壤物理化学分析是使用障碍土壤样品的标准实验室方法进行的。土壤有机碳含量的范围为CA图的0.4-1.8%。这显着大于在常规耕种图下测得的0.4-1.5%的SOC含量。耕作类型和土壤深度对SOC具有显着的相互作用。例如,在0-10 cm的深度与CA图下的10-30 cm相比,在0-10 cm的深度下测量了较大的SOC含量。土壤深度对大多数土壤特性具有显着影响。示例包括重颗粒有机物 - 碳(POM-C)馏分,矿物相关有机物 - 碳(MAOM-C),MAOM级分的氮和氮中的氮。在0-10 cm的土壤深度中,它们比10-30 cm的土壤深度大。但是,相比之下,耕作类型仅对较重的POM-C和MAOM-C级分有显着影响,而POM-C和MAOM-C级分比CA的大于常规耕地。保护农业显示出改善SOC及其相关分数的能力,这是针对理解土地管理对碳存储的影响的发现。
抽象的北极土壤经常受到空降,海洋或动物来源的微生物侵袭,这可能会影响当地的微生物群落和生态系统功能。然而,在冬季,北极土壤是从雪以外的外部来源分离出来的,这是微生物的唯一来源。通过雪微小的ISMS成功地殖民地殖民化,取决于入侵和居民社区的生存和竞争能力。使用浅shot弹枪元素测序和扩增子测序,本研究监测了整个雪融化的雪和土壤微生物群落,以研究北极土壤的定殖过程。由于观察到成功定殖的所有特征,因此可能发生微生物定植。源自雪的定植微生物已经适应了当地的环境条件,随后在北极土壤中经历了许多相似的条件。此外,与竞争相关的基因(例如运动和毒力)在雪样融化时在雪样中增加。总体而言,在土壤中发现了一百个潜在成功的殖民者,因此证明了熔融过程中土壤中雪微生物的沉积和生长。
摘要:土壤水分是水资源管理,农业和灾难预测的关键参数。不同的方法用于估计土壤水分。因此,本文的目的是系统地回顾遥感模型和工具,用于使用不同的学者的方法及其性能来估算区域的表面土壤水分(SM)含量。对先前研究的调查强调了一些一般领域,并探索了土壤水分估计的RS方法,重点是主动传感器和被动传感器。研究还讨论了不同技术的原理,优势和局限性。但是,有些关键领域覆盖不足,需要关注。结果,本系统的审查论文通过评估其技术和方法,其性能评估级别(确定系数r),对RS SM估计模型和工具进行了广泛的比较评估,该模型可以正常执行的环境以及在该论文中进行改进SM预测的已知机器学习模型所考虑的基本参数。doi:https://dx.doi.org/10.4314/jasem.v29i1.39许可证:CC-BY-4.0开放访问政策:Jasem发表的所有文章都是开放式的,均为开放式,免费下载,复制,重新分发,重新分发,翻译,翻译和阅读。版权策略:©2025。作者保留了版权和授予Jasem首次出版的权利。只要引用了原始文章,就可以在未经许可的情况下重复使用本文的任何部分。(2025)。J. Appl。将本文列为:Yamakili,P; Nicholaus,先生; Greyson,K。A.对遥感预测模型和用于估计区域表面土壤水分含量的工具的系统审查。SCI。 环境。 管理。 29(1)327-334日期:收到:2024年10月22日;修订:2024年11月20日;接受:2024年12月28日;发布:2025年1月31日关键字:土壤水分;遥感;模型;表现;预测土壤水分(SM)是在农业,环境科学和水文学等领域发挥作用的重要因素之一。 例如,在农业中,SM是监测农业活动,预测自然灾害并管理灌溉水供应的重要参数(Chadha等,2018;Muñoz-Carpena等,2007; Panuska等,2007; Panuska等,2015,2015年)SM与作物的出现和生长和生长,作物和生产力(CHADHA)也有着良好的关系。 有关SM内容的精确和实时信息对于各种应用程序至关重要,包括干旱监测,洪水预测,作物SCI。环境。管理。29(1)327-334日期:收到:2024年10月22日;修订:2024年11月20日;接受:2024年12月28日;发布:2025年1月31日关键字:土壤水分;遥感;模型;表现;预测土壤水分(SM)是在农业,环境科学和水文学等领域发挥作用的重要因素之一。例如,在农业中,SM是监测农业活动,预测自然灾害并管理灌溉水供应的重要参数(Chadha等,2018;Muñoz-Carpena等,2007; Panuska等,2007; Panuska等,2015,2015年)SM与作物的出现和生长和生长,作物和生产力(CHADHA)也有着良好的关系。有关SM内容的精确和实时信息对于各种应用程序至关重要,包括干旱监测,洪水预测,作物
通过可能包含抗生素(例如肥料)的有机修正案对农业土壤的施肥,可以将细菌病原体和抗生素耐药菌转移到土壤社区。然而,修订后的土壤中肥料传播细菌的侵袭仍然知之甚少。我们假设,这种过程既受土壤特性(及其微生物群落的特性)的影响,又受到兽医护理中使用的抗生素等污染物的存在。为了测试这一点,我们进行了一个缩影实验,在农艺剂量下对四个不同的土壤进行了修改或不进行肥料,并暴露于抗生素磺胺甲胺(SMZ)。孵育1个月后,通过16S rDNA测序评估了土壤细菌群落的多样性,结构和组成。肥料传播细菌的入侵仍然可感知土壤修正后1个月。在实验前6个月,已经用肥料原位修改的土壤获得的结果表明,长期在社区中建立了一些细菌入侵者。即使在土壤之间观察到差异,侵袭也主要归因于一些最丰富的肥料(主要是坚硬)。smz暴露对土壤微生物的影响有限,但我们的结果表明,这种污染物可以增强某些肥料 - 传播入侵者的侵袭能力。
全球气候变化对陆地生态系统功能影响巨大,降水模式的波动范围从极端干旱到不适应这些条件的生态系统中的高强度降雨事件。同时,生态系统功能受到生物多样性迅速丧失的威胁(Tilman 等人,2012 年)。气候变化和生物多样性对生态系统功能产生复合影响的可能性凸显了同时考虑这两个因素的必要性。通过更好地了解生物多样性和气候变化对生态系统过程的潜在机制介质,可以更好地预测此类影响。大量研究表明土壤微生物在生态系统功能( Austin 等人, 2014 ; Dubey 等人, 2019 ; Podzikowski 等人, 2024 )和生物多样性维持( Van Der Heijden 等人, 2008 ; Bever 等人, 2015 )中发挥着关键作用,因此很可能成为调节生物多样性和气候变化对生态系统功能的联合影响的候选者。因此,了解土壤微生物组(包括功能不同的微生物群)如何应对气候扰动以及植物多样性和组成的变化至关重要。土壤微生物组已被证明对降水变化高度敏感( Barnard 等人, 2013 ; Engelhardt 等人, 2018 )。研究表明,细菌和真菌(包括真菌病原体(Coulhoun,1973 年;Talley 等人,2002 年;Delavaux 等人,2021 年 a)和丛枝菌根 (AM) 真菌(House and Bever,2018 年)和卵菌(Van West 等人,2003 年;Delavaux 等人,2021 年 a))的丰富度、丰度和组成会随着降水量的变化而变化。虽然细菌和真菌都对降水量的增加作出反应,但研究发现真菌比细菌更能耐受干旱条件(Barnard 等人,2013 年;Engelhardt 等人,2018 年)。同时,一些真菌病原体(例如锈病,Froelich 和 Snow,1986;根腐病 Wyka 等人,2018;Bevacqua 等人,2023)和腐生菌(Delavaux 等人,2021a)被发现在较潮湿的条件下繁殖。此外,陆生卵菌通常是植物病原体,它们在较潮湿的条件下多样性增加(Delavaux 等人,2021a),这可能是它们依赖水的生命周期所预期的(Thines,2018)。因此,这些对降水的不同反应对于微生物组对植物群落的反馈具有重大影响,例如在干旱条件下对 AM 真菌伙伴的依赖增加( Stahl 和 Smith,1984 ; Schultz 等人,2001 ; Auge,2001 ; Marulanda 等人,2003 )以及在潮湿条件下病原体的影响可能更大。因此,确定功能和分类学上不同的土壤微生物群对重大降水变化的相对敏感性,对于理解微生物组驱动的功能如何随着干旱期延长和降雨期加剧而发生变化至关重要。迄今为止,还没有研究测量过微生物功能群对降水实验性改变的广度。土壤微生物组对植物群落组成也高度敏感。植物物种丰富度的提高可以增加微生物多样性(Lamb 等人,2011 年;Burrill 等人,2023 年),因为植物物种的微生物组通常因根系结构(Saleem 等人,2018 年)、根系
使用全球定位系统(GPS)和地理信息系统(GIS)生成的土壤生育图是有效营养管理决策的关键工具。然而,发现印度比哈尔邦穆扎法尔布尔区的米纳普尔,坎蒂和马尔万街区的土壤肥力数据不足。因此,在这三个区块中进行了土壤肥库存研究,以创建主题土壤生育图。使用手持GPS设备从研究区域的各个位置收集了40个地理参考的复合土壤样品。使用标准方法分析了处理后的土壤样品的各种土壤生育参数。然后,使用具有反距离加权(IDW)插值技术的ArcGIS软件创建土壤养分状态和生育图。结果清楚地表明土壤反应是碱性,pH值超过7.5。发现土壤有机物,钾和硫的含量低至中等,而在这些区块中,可用的氮和磷水平非常低。最终得出的结论是,该研究生成了比哈尔邦Muzaffarpur区的Minapur,Kanti和Marwan Blocks的主题土壤生育图,从而揭示了具有低至中等有机物,钾,硫磺和硫磺以及非常低的氮气和氮气和磷的碱性土壤。关键字:GIS;全球定位系统; Muzaffarpur;土壤生育图。1。引言作为所有生命的源泉,土壤是最重要,最有价值的自然资源[1]。GI用于收集,存储,检索,转换和显示空间数据[14]。土地利用和土壤管理策略对土壤生育能力有影响,土壤生育能力在空间上因田地而异[2,3]。通过有效的营养管理,维持土壤的生育状况对于可持续作物生产是必要的[4,5]。生育能力管理已被证明是一种成功的方法,可以通过物理,化学和生物学过程的结合带来实质性地理变异性的农业土壤的生产力[6-9]。基于土壤测试的生育能力是具有高度空间变异性的农业土壤的有效工具[10]。土壤肥力的基本指标是土壤(质地,结构和颜色)的物理特征,pH,有机物,主要养分,二次营养和微量营养素(B,F,Fe,Fe,Zn,Cu和Mn)等[11]。了解土壤生育能力的状态对于制定支持作物种植设计的有效土壤管理计划至关重要[12,13]。遥感工具(例如全球定位系统(GPS)和地理信息系统(GIS))是评估土壤空间变异性的新兴工具。与农业有关的主题地图(土壤生育能力,土地使用,土地覆盖,土壤侵蚀等)通过GPS工具生成的极大地有助于制定特定地点的营养管理策略[15]。 在技术中,出现了自然的研究极大地有助于制定特定地点的营养管理策略[15]。在技术中,出现了自然的研究
9.3 土壤和地基考虑因素 ................................................................................................................ 32 9.3.1 对齐 ................................................................................................................................ 32 9.3.2 重铺、修复和重建 (3R) ................................................................................................ 33 9.3.3. 9.3.4 沉降...................................................................................................................................... 35 9.3.5 稳定性.............................................................................................................................. 39 9.3.6 路堤基础........................................................................................................................ 41 9.3.7 雨水管理及侵蚀和沉积物控制的岩土工程设计指南 ............................................................. 43 9.3.8 暗渠和边渠 ...................................................................................................................... 57 9.3.9 切坡...................................................................................................................................... 71 9.3.10 冻胀和巨石隆起 ................................................................................................................ 79 9.3.11 岩石开挖............................................................................................................................. 80 9.3.12 开挖、开挖防护和支护 ................................................................................................ 82 9.3.13 弃土设计9.3.14 可选借土区 ...................................................................................................................... 89 9.3.15 土工织物 ...................................................................................................................... 92 9.3.16 受控低强度材料 (CLSM) ................................................................................................ 96 9.3.17 轻质混凝土填料 ................................................................................................................ 99
摘要:机载矿物灰尘对航空构成了安全挑战。由于可见性降低,强烈的风和风剪,在尘埃空气中发生了几次致命事故。粉尘引起的糖霜也至少造成了两次致命事故。此外,由于飞机表面上的腐蚀和磨损以及发动机热截面组件的熔化降低,大气灰尘对飞机工作条件有长期和短期影响。联合影响可以增加运营和维护成本并增加所有权成本。尽管科学界已经开始根据大气尘埃建模和观察来准备和提供产品,但基本科学中仍然存在重要的数据和信息差距。其中包括(i)不足的数据,这些数据不足以了解灰尘对飞机以及地面系统和操作的影响(例如,尘埃矿物学的四维信息,成本 - 纤维纤维分析对航空沿着飞行路线的影响的成本效益分析)工作流程以及(iii)尘埃危害在法规和操作程序以及飞行员的培训,技能和知识基础中的不发达,不清楚或不存在的作用。本次审查针对的是学术和航空利益相关者,并在尘埃危害,航空安全的交汇处以及对飞行运营和飞机维护的影响方面介绍了最先进的知识。
通常描述,土壤功能的特征是其能够维持微生物活性,营养元素供应,结构稳定性和作物生产的援助。由于土壤功能可以与80%的生态系统服务相关,因此对土地的保护不仅应努力恢复土壤的能力维持植物群的能力,而且还应恢复生态系统的能力。土壤的主要生态系统服务是碳的隔离,食物或生物量生产,提供微生物栖息地,营养回收利用。但是,从未量化由农业土地用途提供的实际土壤功能的实际幅度。营养供应能力(NSC)是恢复土地用途中营养动态的量度。碳积累水平(CAP)是生态系统碳固相的微不足道。生物活性指数(BAI)是通过控制/参考土地在经过处理的土地中所有酶活性的平均值。帽子议员研究了土地使用方式可能影响碳流,保留和封存。CAP为C周期,流量和系统相对操作至高无上的信号。
城市化和气候变化带来了重大的环境挑战。尽管研究较少,但城市土壤对于通过提供生态系统服务(例如碳存储和水调节)来缓解这些挑战至关重要。这项研究探讨了瓦格宁根的城市土壤管理,这是一个更扩展的项目的早期阶段。采用跨学科方法结合了现场研究和公民科学,这项研究涉及城市土壤研究中的花园所有者,并在一项现场研究中进行了科学模仿花园土壤条件,以获得对城市花园土壤的实验研究。在获得花园和周围特征的信息后,结果显示,花园中的土地覆盖型百分比与邻里树木多样性或花园土壤质地之间没有显着相关性(Sandy vs. Clay)。在现场研究中,土壤的CO2排放通量显示土地覆盖或表土深度没有显着差异,这可能是由于植被和冬季条件的建立阶段。土壤水分对二氧化碳发射通量的负面影响略有显着影响。尽管如此,这些调查和测量结果为未来的城市土壤管理研究提供了基础数据。