Stuart在土壤和再生农业实践方面具有专家知识,他在自然资源管理方面的努力使他在2015年国际土壤年度获得了土壤冠军,然后在2016年由西澳大利亚州北部农业流域委员会于2016年加入了区域自然资源管理领导力荣誉榜。他经常在西悉尼大学的土壤生物学大师班。Stuart是Regenwa的主席,Regenwa是一个由致力于西澳大利亚农民和行业利益相关者组成的网络,他们正在识别,实施和共享其他农民可以采用的创新土地管理实践。
•仅接受景观图像训练的CNN模型已经在产生了农场土壤碳和其他生态特征的有用映射。•有了进一步的输入和资源,这些肯定可以使这些变得更加准确。•我们预测,使用卫星图像,其他数值景观数据和高级多模式神经网络模型的组合,在不久的将来将有可能对农业活动进行可靠的验证。
已经研究了土壤有机物的农艺益处已有数百年历史了,但是当代重点已经扩大,以询问土壤有机碳(SOC)的长期储存如何有助于缓解气候变化。了解广阔的牧场中SOC隔离的潜力对于气候变化政策,农业土地管理和碳市场机会至关重要。在这篇综述中,我们评估了已发表的现场试验和建模研究的证据,用于在管理牲畜放牧的澳大利亚牧场土壤中进行隔离。我们发现,与新管理有关的高质量SOC股票变化数据的长期研究很少,我们的分析受到数据限制,研究之间的冲突以及高度可变的气候,土壤和跨生产系统的景观条件的限制。降雨和土壤特性是牧场中SOC股票变化的主要决定因素,并且很难检测到这些环境中的管理影响。但是,有一致的证据表明:(1)在现有草草中播种更多的生产性草或豆类通常会增加SOC股票; (2)长时间的长期库存与SOC净损失有关; (3)放牧或排除放牧会导致SOC的增加,尤其是在退化的土壤中; (4)从种植到永久牧场的转换导致隔离,受管理历史的影响; (5)旋转放牧策略表明,相对于连续放牧,对SOC股票的影响可忽略不计; (6)水块最初增加的SOC库存,但尚未证明持久性。我们讨论了在不确定性以及牲畜生产的相关利益和相关利益和权衡取舍的情况下,在牧场上进行SOC隔离的机会,并提出建议以改善主要管理策略的证据库。
超材料是人造结构,表现出可以在土木工程应用中利用的波浪控制特性。中,局部共振的超材料能够在波长上控制和操纵波长比单位细胞大小的尺寸几倍,因此对于低频振动抑制很有用。本文介绍了0.4 m厚的基于超材料的面板的设计,安装和验证,以缓解铁路引起的振动。屏障包括由四个由外部细长钢钢筋连接在一起的混凝土金字塔制成的局部谐振单元。单位电池在数值和实验上都是从动态的角度来表征的,然后在Elze(德国)的火车站的障碍物上进行全尺度现场测试。此测试验证了基于超材料的面板在与数值和实验室测试的良好一致的谐振频率下提供低频缓解10 dB的有效性。
omya已采取一切可能的护理,以确保此处的各个方面正确的信息是正确的。但是,Omya不能对本文可能发现的任何错误或遗漏负责,也不会对任何可能的信息使用责任承担任何责任,同样是出于真诚而给予的,但没有法律责任。此信息不会产生任何表示或暗示的任何形式的保证,包括适合目的和不侵入知识产权。提供的技术信息包括典型数据,不应将其视为代表规范。Omya保留更改任何数据的权利,恕不另行通知。
土壤是通过风化,物理/化学和生物学过程改变地球地壳的上层。它由矿物颗粒,有机物,水,空气和活生物体组成,这些生物是在遗传土壤中组织的。不同的土壤代表了各种基础因素在其形成中的影响,并且随着它们的理化特征沿着不同轴(表面和地下地平面)移动时,在微型壁球范围内的位置和给定位点内存在可变性。这种奇怪的特征将土壤转化为非常多样化的生态系统的综合,因此其研究很困难,因为非常多样化的社区可以在相同样本的较小规模中共存。土壤生物涉及宏观/Megafauna,Mesofauna和Microfauna/Flora,尽管占土壤总质量的不到1%,但它们在维持土壤生态系统方面起着关键的功能作用。本研究描述了特征关键土壤微生物的各种方法,例如细菌,古细菌,植物生长促进细菌,卷肌菌根和线虫。关键字:土壤;微生物;宏/ megafauna; Mesofauna;缩影。1。简介“土壤是地球表面的天然物理覆盖物,代表
土壤是一个复杂而动态的生物系统,而且直到 2003 年,仍然很难确定土壤中微生物群落的组成。我们在确定微生物介导的反应方面也受到限制,因为目前用于确定整个代谢过程(如呼吸)或特定酶活性(如脲酶、蛋白酶和磷酸单酯酶活性)的总体速率的检测方法无法识别直接参与测量过程的微生物物种。微生物多样性与土壤功能之间的联系所带来的核心问题是了解遗传多样性与群落结构之间的关系以及群落结构与功能之间的关系。更好地了解微生物多样性与土壤功能之间的关系不仅需要使用更准确的检测方法对从土壤中提取的 DNA 和 RNA 进行分类和功能表征,还需要使用高分辨率技术来检测土壤基质中非活性和活性微生物细胞。土壤似乎具有功能冗余的特点;例如,微生物多样性与有机物分解之间不存在任何关系。一般来说,任何物种群的减少对土壤的整体过程影响不大,因为其他微生物可以承担其功能。确定土壤中微生物群落的组成对于更好地量化营养转化来说并不是必要的。基于库中系统的划分和连接这些库的通量的测量的整体方法是最有效的。通过熏蒸技术测定微生物 C、N、P 和 S 含量可以更好地量化土壤中的营养动态。然而,进一步的进展需要确定新的库,例如活性微生物生物量,也需要使用分子技术。最近,研究人员通过密度梯度离心分离了 13 C 和 12 C DNA,它们都是从用 13 C 源处理的土壤中提取的。这种技术应该允许我们通过将标记 DNA 和总 DNA 之间的比率乘以土壤中微生物生物量 C 含量来计算活性微生物 C 库。此外,13 C-DNA的分类学和功能表征使我们能够更准确地了解土壤中添加的C底物对微生物群落组成的变化的影响。
监管机构应使用预防原则指导行动,这意味着应根据现有的科学证据采取预防措施,尽量减少或避免对人类健康或环境的威胁,而不是等待科学对因果关系的完全确定,因为这可能要花数年或数十年的时间,而危害也会随之累积。预防原则还强调,在采用潜在风险的新技术之前,对更安全的方法进行全面评估非常重要。监督应包括对公共卫生和环境安全的独立评估,在产品投放市场或进入环境之前,应评估长期影响。预防原则还指导将公众意见纳入决策过程,因为农业领域转基因微生物等新技术的影响将由整个社会承担。此外,在产品商业化之前,必须将企业扩大对微生物的产权而引起的社会经济问题纳入决策。
I.引言4农业中微生物输入的快速历史4蓬勃发展的“生物学”市场5在农业中GE Microbes的待发泛滥5 Agrichemical Corporations的错误营销主张:从“养活世界”到“再生农业” 6关键结论8 II。背景9微生物在土壤和农场生态系统中的基本作用9有机和农业生态农业对促进健康土壤微生物组的重要性10 III。农业化学公司在生物产品中的投资不断增长13个因素,推动了农业化学公司对生物学的投资14还原主义与生态学14独立生物学公司和初创公司17学术研究的作用17 IV。在农业中基因工程的微生物的兴起18种ge微生物在农业中的应用类型19 1。氮固定20 2。害虫控制21 3。使微生物“易于处理” 22 V.风险和关注25我们知识和意外后果的限制25
细菌隔离是一个关键过程,使我们可以根据其生长模式将不同的微生物群分开。这种方法可以通过允许各种细菌在独特的营养培养基上生长不同,这取决于温度,pH值,氧气可利用性和其他因素。分离细菌对于弄清和分类这些微生物至关重要。细菌隔离过程涉及多个步骤:收集样本,保存它们,培养样品,然后在显微镜下查看它们。标本可以来自各种来源,例如临床样本(例如血液或尿液),环境样本(例如空气或水)或食物样本。必须在无菌条件下保存这些标本并迅速运输以保持其可行性高并防止过度生长。细菌隔离使用基于培养的和非培养技术,例如PCR或LCR。培养细菌标本后,根据颜色,形状,大小和染色特征等特性进行微观检查。这有助于我们了解存在哪些细菌及其特定特征。细菌隔离的定义包括使用倒入,扩散,条纹或连续稀释的方法将一种类型的细菌与混合培养物分离。通过将细菌悬浮液添加到固体培养基或液体汤中,我们可以观察到生长模式并使用检测二氧化碳生产的自动化系统。细菌分离对于研究分离细菌的形态,生理和致病特性至关重要。各种镀层方法用于细菌分离,包括倒入,扩散,条纹和连续稀释。浇注方法很简单;它涉及采用大型细菌样品,将养分琼脂培养基添加到包含样品的培养皿中,然后旋转板以均匀分布。可以通过各种方法来实现细菌隔离的过程,每种方法都有其自身的优势和局限性。对于细菌的适当生长,必须在孵育前固化培养板。这可以通过允许培养板加入营养培养基后冷却来完成。在浇注方法中,细菌的悬浮液仍然存在于固体培养基中,这使得隔离纯文化具有挑战性。菌落可能出现在培养基表面或下方,导致过度生长和污染。另一方面,扩散方法涉及在允许固化后将细菌悬浮液添加到固体营养培养基中。此技术比倒入更简单,但仍需要仔细处理才能实现细菌的均匀分布。条纹方法被广泛用于隔离纯培养物,因为它允许创造狭窄的生长带,从而使污染的可能性降低。此方法涉及使用接种环将少量细菌悬浮液应用于培养基,然后在35-37摄氏度中孵育板。串行稀释是另一种涉及在连续的测试管中串联细菌悬浮液稀释的技术。此方法对于从小种群中隔离细菌特别有用,因为它允许单个管中的样品浓缩,从而更容易观察单个菌落的生长。稀释的样品少于水的浓度较少,而稀释的样品将含有高浓度的水。这意味着细菌种群与样品的稀释量成反比。要准确地识别孤立的菌落,至关重要的是选择较少菌落的人进行进一步检查。通过分析这些特征,例如生长模式和生化特性,可以诊断临床标本并鉴定在环境中发现的细菌变得可行。