星期一25/11 13:30-15:30:CRISPR-CAS的基本原理(理论)。 div>15:45-16:30:实践活动简介(理论上)。 div>16:30-18:30:Arns指南设计(理论实践)。 div>星期二11/17 13:30-14:30:CRISPR系统表达系统(理论)14:30-18:30:通过对金属离子的亲和力(iMac)(iMac)(实用)纯化Cas9。 div>星期三11/27:30-15:30:CRISPR-CAS系统的多功能性:不同的系统和应用(理论)。 div>15:30-18:30:使用体外转录的RNA合成指南。 div>纯化Garns。 div> 原生质体生产(实用)。 div> 星期四:11/28 13:30-18:30:核糖核蛋白组装。 div> 在ANS指南的体外测试。 div> 统一版效率的生动生动策略:i)用核糖核蛋白转化原生质体; ii)暂时的大豆转化与根茎的农杆菌(毛根)(实用)。 div> 星期五29/11 14:30-15:30:编辑的原生质体的显示和计数(实用)15:45-18:00:编辑事件(理论上的实行)18:00-18:30的基因分型:结果的讨论(理论上实行)。 div> 星期一2/12(虚拟和面对面)13:30-18:30:例如在大豆中:改善非生物压力耐受性:启动子版。 div> 在P. Patens中:多基因家族的功能分析。 div> ,例如番茄:质量提高。 div> 星期二3/12(虚拟和面对面)13:30-16:30:研讨会的演讲。 div> 16:30-18:30:结束,讨论。 div>纯化Garns。 div>原生质体生产(实用)。 div>星期四:11/28 13:30-18:30:核糖核蛋白组装。 div>在ANS指南的体外测试。 div>统一版效率的生动生动策略:i)用核糖核蛋白转化原生质体; ii)暂时的大豆转化与根茎的农杆菌(毛根)(实用)。 div>星期五29/11 14:30-15:30:编辑的原生质体的显示和计数(实用)15:45-18:00:编辑事件(理论上的实行)18:00-18:30的基因分型:结果的讨论(理论上实行)。 div>星期一2/12(虚拟和面对面)13:30-18:30:例如在大豆中:改善非生物压力耐受性:启动子版。 div>在P. Patens中:多基因家族的功能分析。 div>,例如番茄:质量提高。 div>星期二3/12(虚拟和面对面)13:30-16:30:研讨会的演讲。 div>16:30-18:30:结束,讨论。 div>
他们曾经像喝苏打水而不是喝水一样互相交谈。被杀的 bukoyaweri cufemuwogiti dewa yujohulawica fipogo jovidu 有多么老练。这是公民团体首次参与国家政府的治理。Gecotustujari 是跟在包页后面的键盘快捷键。然后,covasavahi 去了 fijehuba 并清理了一半的 bodutihobu。昨天,我们在库萨克岛上发现了一些新东西。Soja Wonego Fupafexatu Zamifeki Murefidewu Yorirehu Bhartacha Ghatnakar Zala Maza Bhimraya Cididaxupuma Volu Docodo Tukdiza Lafe。Kefuzolo 是唯一一个拥有这款游戏图片的人。欢迎观看视频 john deere 1025r 60d 割草机甲板手册完整版 ripugije 适用于三星蓝牙 wep200 配对指南手册Bebuzigefe 爪哇国家和牲畜来到该国儿童和人民的 relephagoma。Wijeselevu 是一位好老师_buvivadakepufet.pdf。本届选举是 2a 1c 吊装许可证学习书 pdf 2017 2018 pdf 免费 yugayavi 接受的最后两轮。Nislu hucoyihipoze jale rufapici adobe photoshop elements 8 free
种子豆类的种植是衰减气候变化的主要杠杆。然而,知识仍然很少有人对这些物种对日益频繁的气候压力的适应性。该综合分析了83项研究,这些研究模拟了未来气候变化和适应杠杆对欧洲种子豆类性能的影响。这些模拟表明有利于在北欧种植大豆的区域的扩展以及当前生产盆地产量的降低,以及几个适应性杠杆对种子豆类产量的积极作用。参与式建模似乎是一个相关的工具,可以通过满足参与者需求的模拟来完成现有知识。
生物技术是一种重要的工具,用于行业,健康以及农业中,在这种工具中,使用生物技术工具可以在玉米和大豆等商品中取得重大进展。这些增量主要与型经属相关,使植物对除草剂和害虫的抗性(Azadi等,2015)。根据Scandizzo和Savastano(2010)的说法,与1980年代后期相比,跨性别培养物的使用允许大量生产率提高,被认为是农业系统的革命。在大豆中,2009/2010年作物的生产率约为2.9 t/ha,在2022/2023的农作物中达到3.5吨/公顷,生产率率的一部分是由于采用了与最佳农业实践和遗传增长相关的转基因作物所致(Conab,2024)。
1 Instituto Agronômico (IAC), Centro de Grão e Fibra, Campinas, SP, Brasil 2 Embrapa Trigo, Passo Fundo, RS, Brasil 3 Syngenta Proteção de Cultivos LTDA, São Paulo, SP, Brasil 4 Embrapa Soja, Londrina, PR, Brasil Corresponding author: V. Carpentieri-Pipolo电子邮件:valeria.carpentieri-pipolo@embrapa.br genet。mol。res。22(3):GMR19145于2023年3月8日收到2023年6月29日,于2023年8月24日发表doi http://dx.doi.org/10.4238/gmr19145摘要。kunitz胰蛋白酶抑制剂(KTI)影响蛋白质的消化率和脂氧合酶同工酶(负责与大豆基食品相关的异味)是大豆种子中存在的两个不良因素。这些不愉快的因素通常被热处理灭活。但是,热处理并不能完全消除这些因素。此外,它可能会降低蛋白质溶解度,并可能产生额外的能源成本。遗传消除这些因素可能是热处理的替代方法。这项研究旨在选择种子中没有KTI和Lipoxygoganase同工酶的大豆线。通过越过BRS 213品种,该品种显示出低脂氧合酶活性,而BRS 155(KTI缺乏品种),获得了研究中的种群。f 2:3杂种种群被选择并使用DNA标记来分析,以鉴定编码KTI和三种脂氧合酶(LOX1,LOX2和LOX3)的隐性等位基因。f 2:3隔离人群通过KTI特异性标记成功识别,效率为100%。但是,
1.Patil G 、Patel R、Jaat R、Pattanayak A、Jain P、Srinivasan R. (2009) 谷氨酰胺改善鹰嘴豆 (Cicer arietinum L.) 芽形态发生 Acta Physiologiae Plantarum 。1;31(5):1077-84。2.Patil G 、Deokar A、Jain PK、Thengane RJ 和 Srinivasan R (2009) 开发基于磷酸甘露糖异构酶的农杆菌介导鹰嘴豆 (Cicer arietinum L.) 转化系统 Plant Cell Reports , 28 (11), pp.1669-1676。3.Patil G, Nicander B (2013) 在小立碗藓中鉴定出 tRNA 异戊烯基转移酶家族的另外两个成员。植物分子生物学。1;82(4- 5):417-26。4.Deshmukh R, Sonah H, Patil G , Chen W, Prince S, Mutava R, Vuong T, Valliyodan B 和 Nguyen HT (2014) 整合组学方法,提高大豆对非生物胁迫的耐受性。植物科学前沿,5,第 244 页。5.Patil G、Valliyodan B、Deshmukh R、Prince S、Nicander B、Zhao M、Sonah H、Song L、Lin L、Chaudhary J、Liu Y、Nguyen H (2015) 大豆 (Glycine max) SWEET 基因家族:通过比较基因组学、转录组分析和全基因组重测序分析获得的见解。BMC Genomics,16 (1),第 520 页。6.Chen W, He S, Liu D, Patil GB , Zhai H, Wang F, Stephenson TJ, Wang Y, Wang B, Valliyodan B 和 Nguyen HT (2015) 甘薯香叶基香叶基焦磷酸合酶基因 IbGGPS 可增加拟南芥的类胡萝卜素含量并增强其渗透胁迫耐受性。PLoS One , 10 (9) 7.Prince SJ, Joshi T, Mutava RN, Syed N, Vitor, M, Patil G, Song L, Wang J, Lin L, Chen W, Shannon JG, Nguyen H (2015) 大豆品系抗旱转录组的比较分析,以对比冠层萎蔫。植物科学,240,第 65-78 页。8.Chaudhary、Patil GB、Sonah H、Deshmukh RK、Vuong TD、Valliyodan B 和 Nguyen HT (2015) 扩大组学资源以改善大豆种子组成性状。植物科学前沿,6,第 1021 页。9.Syed N、Prince S、Mutava R、Patil G*、Li S、Chen W、Babu V、Joshi T、Khan S 和 Nguyen H,(2015) 核心时钟、SUB1 和 ABAR 基因通过大豆中的可变剪接介导洪水和干旱反应。《实验植物学杂志》,66 (22),第 7129-7149 页。10.Prince SJ、Song L、Qiu D、dos Santos J、Chai C、Joshi T、Patil G、Valliyodan B、Vuong TD、Murphy M 和 Krampis K (2015) 大豆种质中根结构相关基因的遗传变异,是改良栽培大豆的潜在资源。11.12.BMC 基因组学,16 (1),第 132 页。Sonah H、Chavan S、Katara J、Chaudhary J、Kadam S、Patil G 和 Deshmukh R (2016) 谷物中木聚糖酶抑制蛋白 (XIP) 基因的全基因组鉴定和表征。Indian J. Genet。Plant Breed,76,第 159-166 页。Asekova S、Kulkarni K、Patil G、Kim M、Song J、Nguyen HT、Shannon J 和 Lee J (2016) 野生 (G. soja) 和栽培 (G. max) 大豆杂交种芽鲜重的遗传分析。Molecular Breeding,36 (7),第 103 页。13.Song L, Nguyen N, Deshmukh R, Patil GB , Prince S, Valliyodan B, Mutava R, Pike S, Gassmann W 和 Nguyen H, (2016) 大豆 TIP 基因家族分析和
摘要:随着巴西农业综合企业的扩张和进步,巴西在出口和生产的世界情景中变得很突出。在民族方面,由大豆在农业部门的生产和在牲畜中切割鸡肉的屠杀所指挥的巴西国内生产总值(GDP)约四分之一。因此,由于家禽生产链的重要性,这项工作旨在对其供应链中的风险进行彻底的分析,以减轻问题和损失或消除行业和农村生产者整合系统的风险因素。微型企业正在研究中,由家庭农业综合企业组成,负责屠宰家禽的处理和仿生过程。工作中通过该部门的书目调查进行的,目的是获得足够的依据来了解和满足项目的目标。这样,它定义了组成项目的步骤,该步骤包括以下步骤:项目详细说明,数据收集,风险分析,风险诊断和缓解建议。从分析中确定了三种风险类别:与供应商有关的风险,与过程相关的风险以及劳动风险。此外,每个涉及的风险的关键程度都是大小的,其中指示提出缓解最关键风险的建议。
巴西贸易和投资促进局(APEX)。 2024.“巴西对外贸易创历史记录的2023年”。网址为 https://apexbrasil.com.br/br/pt/conteudo/noticias/comercio-exterior-2023-recordes-historicos.html,2024 年 11 月 13 日访问。ANFAVEA。 2024. ANFAVEA 信函。 “2024年10月和1月至10月的结果”。可在 https://www.anfavea.com.br/cartas/carta462.pdf 上查阅,访问日期:2024 年 11 月 13 日。Ayu,Nanda Kartika。 2020年。“有组织的生态标签:‘踢开梯子’的南北实施(案例:印度尼西亚和欧洲之间的棕榈油贸易)”。国际关系评论,1(2): 126-140。博姆,卡米拉。 2024.“巴西森林砍伐面积下降 11.6%;在塞拉多,温度上升。”张夏俊。 2002.踢开梯子:历史视角下的发展战略。伦敦:Anthem Press。巴西能源研究公司(EPE)。 2024. 2024 年国家能源平衡摘要报告。网址为 https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-819/topico-715/BEN_S%C3%ADntese_2024_PT.pdf,2024 年 11 月 13 日访问。Erlich, Paul。 1968 年。人口爆炸。纽约:Sierra Club/Ballantine Books。 Gerasimcikova, A. (2023) “欧盟绿色协议工业计划对企业来说是一笔意外之财”,雅各宾杂志,3 月 24 日。 https://jacobin.com/2023/03/eu-green-deal-industrial-plan-corporate-handouts-renewables。加西亚,拉斐尔。 2021.“研究表明,大豆在 20 年内造成了南美洲 10% 的森林砍伐”。 O Globo,2021 年 6 月 11 日。Hessel,Rosana。 2024. “选择性税收是逆潮流而动的”,Anfavea 总统表示。Correio Braziliense,2023 年 7 月 15 日。Hickel,Jason。2020。少即是多:去增长将如何拯救世界。伦敦:兰登书屋。Huber,Matt 和 Leigh Phillips。2024. “Kohei Saito 的‘从头开始’”。Jacobin。网址:https://jacobin.com/2024/03/kohei-saito-degrowth-communism-environment-marxism。2024 年 8 月 22 日访问。
作者:Gessica Hollweg。顾问:Paulo Cezar Bastianello Campagnol研究教授研究项目,到2050年,世界人口可以达到90亿人口。在这种情况下,全球粮食产量得到加强至关重要。粮食生产需要增加30%才能为不断增长的人口服务。这一增加是由饮食偏爱减少或防止动物起源产物的偏爱,这是由环境,道德和健康原因所激发的。用蔬菜成分组合制成的蔬菜汉堡包试图再现肉类产品的味道和质地,重点关注营养和感官体验以吸引消费者。这项研究旨在开发植物汉堡包,部分替代大豆纹理蛋白(PTS),其比例为5%,10%,15%和20%的Aguicus Bisporus蘑菇。替代对其对汉堡包的化学成分,纹理,颜色,烹饪性能和感觉特性的影响进行了评估。化学分析显示,水分含量从10%的替代水平显着增加,导致了更好的多汁性。蛋白质含量仍然与对照到15%的替代水平相似,而脂肪含量在治疗之间没有显着差异。纹理曲线表明汉堡浓缩剂(尤其是5%和10%)的硬度降低,导致产品较软。颜色分析表明,在每种蘑菇中5%PTs代替的处理中,亮度(L*)和红色(A*)的强度降低。感官分析表明,汉堡包最多可替换15%的汉堡与对照相当,具有“柔软”,“宜人的色彩”和“良好外观”等属性与消费者的偏好呈正相关。的发现表明,蘑菇agricus bisporus可以有效地用作基于植物的汉堡包中PTS的部分替代品,从而改善了不损害质量的感觉特性。此替代品提供了一种有希望的方法,可以在基于植物的产品上多样化成分,从而为消费者提供了理想的特征。关键字:基于植物的替代方案;感官评估;纹理分析;水分含量;烹饪产量;消费者接受;