缩写:1L,第一行; 2L,第二行; BC,乳腺癌; BSAB,双特异性抗体; BTC,胆道癌; CCR8,C-C基序趋化因子受体8; CRC,结直肠癌; DGKζ,二酰基甘油激酶ζ; GC,胃癌; GEA,胃食管腺癌; HER2,人表皮生长因子受体2; HNSCC,头和颈部鳞状细胞癌HPK1,造血祖细胞激酶1; lag3,淋巴细胞激活基因3; LS-SCLC,有限阶段的小细胞肺癌; MBC,转移性乳腺癌; MSS,微卫星稳定性; OX40,肿瘤坏死因子(TNF)受体家族的成员,也称为CD134。 RCC,肾细胞癌; r/r,复发/耐火; SCLC,小细胞肺癌; SMAC,第二个线粒体衍生的caspase激活剂; TIM3,T细胞免疫球蛋白结构域和粘蛋白结构域3; UC,尿路上皮癌。
TNBC,三阴性乳腺癌; CCR8,CC趋化因子受体8; CD3,分化3群; CRC,结直肠癌; CSF-1R,刺激性因子-1受体; DGKζ,二酰基甘油激酶ζ; DKK1,Dickkopf-1; DLL3,类似三角洲的配体3; ESCC,食管鳞状细胞癌; FGFR,成纤维细胞生长因子受体; GBRCAM,种系BRCA突变; GC-GEJC,胃癌 - 糖食管癌; HCC,肝细胞癌; 1L,第一行; MCRPC,转移性cast割前列腺癌; MTX,维护处理; NSCLC,非小细胞肺癌; PARP,聚(ADP-核糖)聚合酶; PI3KΔ,磷酸肌醇3-激酶三角洲; PSOC,铂敏感的卵巢癌; RAF,快速加速的纤维肉瘤; STEAP1,前列腺1的六跨膜上皮抗原; VEGFR,血管内皮生长因子受体。
目前,关于“固态电池”主题的高级研究学院的持有代表了一系列北约赞助的事件中的逻辑发展。1972年在意大利贝尔格拉蒂(Belgerati)和1975年的科西嘉(Ajaccio)的暑期学校,讲述了“固体 - 州iollics”的主题,涉及固态电力化学和材料科学的基本方面。在1979年在法国奥斯西斯举行的“高级电池材料”的科学委员会研究所的应用中,特定的固体离子导体的应用发挥了重要作用。对这些和相关领域的兴趣在此期间已经大大增长,并且今天持续了。在大学,政府研究实验室和行业,全球以及一系列国际会议和合作中都存在研究与开发计划。高级电池,无论是中学还是初级的电池,在20世纪后期及以后的许多技术发展方面都起着重要的作用。应用包括固定存储,车辆牵引力和远程电力来源,以及工业和无线产品以及消费者和军事电子产品。全盖状态电池的概念并不是什么新鲜事物,但直到最近,他们的性能排除了它们在专家低功率(主要,主要应用)以外的其他用途。最近的材料的开发使固态电池在上述所有应用程序扇区中成为真正的可能性。此外,这些细胞在当今和高级系统上提供了许多吸引人的功能。
太空运输系统Haer No.TX-116第337页V.固体火箭助推/可重复使用的固体火箭电机简介Twin Solid Rocket Booster(SRB)(SRBS),设计为STS的主要推进元件,在发射的前两分钟内为航天飞机提供了80%的升空推力。他们燃烧了超过2,200,000磅的推进剂,并产生了3600万马力。1487每个SRB助推器都由电动机和非运动段组成。电动机段(称为实心火箭电机(SRM)),后来更名为“可重复使用的固体火箭电机”(RSRM),其中包含燃料来为SRB供电。1488 SRMS/RSRMS是有史以来最大,唯一的固体螺旋桨火箭电机,也是第一个用于恢复和重复使用的设计。主要的非运动段包括鼻盖,frustum以及前进和后裙。这些结构成分包含电子设备,可在升空,上升和ET/SRB分离期间引导SRB,并放置了降落伞,这使可重复使用的助推器的下降减慢了从航天器的抛弃后进入大西洋。从历史上看,SRM/RSRM开发遵循与非运动SRB组件分开的路径。在整个SSP中,犹他州Promontory的Thiokol是SRM/RSRM的唯一制造商和主要承包商。超过400个供应商,位于37个州和加拿大,提供了金属组件,密封,隔热材料,面料,油漆和粘合剂。此外,六家公司还提供了构成RSRM推进剂的主要成分。1489 Thiokol向NASA提供了推进剂的前进电机盒细分,并安装了点火器/安全和手臂(S&A)设备;两个推进剂的中心运动案例段;加载的船尾电动机箱段,安装了喷嘴;表壳加强圈;以及安装了遣散系统的船尾出口锥体组件。其中包括犹他州锡达拉皮兹(Cedar Rapids)的美国太平洋(AMPAC)(高氯酸铵);德克萨斯州自由港的陶氏化学(环氧树脂);德克萨斯州罗克代尔的铝业(铝粉);伊利诺伊州内珀维尔的Toyal America(球形铝制粉末);位于肯塔基州路易斯维尔的美国合成橡胶公司(ASRC)(聚丁二烯 - 丙烯酸 - 丙烯酸丙烯腈Terpolymer [PBAN]);宾夕法尼亚州伊斯顿的元素色素(氧化铁)。对于最终的飞行电动机,三菱阿根廷铸币厂取代了Alcoa提供的铝粉,而高氯酸铵则由HCL-Olin在Becancour,Becancour,Quebec,Quebec,加拿大,加拿大和纽约州尼亚加拉瀑布提供。
滋养层细胞表面抗原 2 (Trop2) 在多种实体肿瘤中过表达,参与多种致癌信号通路,使其成为一个有吸引力的治疗靶点。在过去十年中,各种 Trop2 靶向疗法的快速发展,尤其是抗体-药物偶联物 (ADC) 的出现,彻底改变了治疗方案有限的 Trop2 阳性肿瘤患者的治疗结果,例如三阴性乳腺癌 (TNBC)。本综述全面总结了 Trop2 靶向疗法的进展,包括 ADC、抗体、多特异性药物、免疫疗法、癌症疫苗和小分子抑制剂,并深入讨论了它们的设计、作用机制 (MOA) 和局限性。此外,我们强调这些新兴的 Trop2 靶向药物的临床研究进展,重点介绍它们的临床应用和对肿瘤的治疗效果。此外,我们提出了未来的研究方向,例如增强对Trop2结构和生物学的理解,探索最佳组合策略,以及根据Trop2检测方法定制精准治疗。
这是我第一次讲授固体物理学,因此应该认为讲稿还在编写中。讲稿将在整个课程中不断扩展和修改,因此最好不要一开始就将其打印出来,而应留作以后参考。讲稿摘录自其他讲稿和书籍。但图片(除非另有说明)均为原件。所讨论内容的很大一部分取自 Tobias Brandes 的讲稿。讲稿将在线提供,网址为 http://www1.itp.tu-berlin.de/schaller/lectures.html。如有任何更正和改进建议,请发送至我的邮箱 gernot.schaller@tu-berlin.de。特别感谢 Javier Cerrillo 博士和 Philipp Stammer 提交的更正。讲稿将于周四 10:15–11:45 和周五 8:30–10:00 举行。除了讲座之外,学生还应参加每周二 14:15–16:00 在 EW 114 举行的研讨会。要获得学分,学生应在研讨会上提交常规家庭作业并获得至少 60% 的分数。以下是一些对讲座有用的文献: