摘要:CSPBBR 3量子点(QD)是光电设备的有希望的候选者。用二烷基铵(例如二二二烷基二甲基溴化物溴化物(DDAB))取代油酸(OA)和油胺(OLA)盖剂,表明外部量子效率(EQE)的含量增加了0.19%(OA/OLA)至13.4%(dd.4%)。设备的性能显着取决于QD固体中光激发载体的分解长度和迁移率。因此,我们通过构造双尺寸的QD混合物来研究DDAB限制的CSPBBR 3 QD固体中的电荷载体传输动力学。可以通过定量改变两个尺寸的QD之间的比率来监测荷兰载波的差异,从而改变了每个QD群集中载体的平均自由路径。从超快瞬态吸收光谱获得的QD固体的激发态动力学表明,由于强量量子的构造,光生的电子和孔很难在小型QD(4 nm)中使用。另一方面,大型QD(10 nm)中的光诱导的电子和孔都将与小型QD插入界面,然后进行重组过程。将载载物的不同研究与混合物中的QD组件上的蒙特卡洛模拟相结合,我们可以在10 nm cspbbr 3 qds中计算出电荷载体的差值长度为〜239±16 nm,以及电子和电子的迁移率,以及2.1(2.1(2.1(0.6))和0.6(0.6)(0.69(±0.6)(0.69)(0.69)(±0.69)(±0.69(±0.6)(±0.69)(±0.69)(±0.69)(±0.69)(±0.69)(±0.69)(±0.69)(±±0.6)(±±0.6)(±±±9)(±±0.6) 分别。这两个参数均表示DDAB限制的QDFIFM中有效的电荷载体传输,这合理化了其LED设备应用程序的完美性能。关键字:超快光谱,扩散长度,cspbbr 3,ddab,量子点光伏,载体传输,电荷转移■简介
用于确定TOC的系统参数,应用了TOC差异方法。TOC等于TC和TIC之间的差异:TOC = TC - TIC。因此,必须确定每个样品的TC和TIC。通过使用“自动”和自动固体Sampler FPG 48的多EA 4000 C进行了两项测量。根据分析使用两个称重样品等分试样。用40%H 3 PO 4自动将第一个样品等分试样自动酸化,释放了来自碳酸盐的CO 2,并直接测量了TIC。使用第二艘船,将第二个样品等分试样引入1,200°C的电阻炉中,并在纯氧气中完全消化。在两种运行中,测量气体均干燥并清洁,并通过NDIR光谱法测量碳含量。TOC的计算是由设备的多翼软件自动执行的。
III-V 族胶体量子点 (CQDs) 是用于光电应用的有前途的材料,因为它们避免了重金属,同时实现了从可见光到红外 (IR) 的吸收。然而,III-V CQDs 的共价性质要求开发新的钝化策略来制造用于光电器件的导电 CQD 固体:这项工作表明,先前在 II-VI 和 IV-VI 量子点中开发的使用单个配体的配体交换不能完全钝化 CQD,并且这会降低设备效率。在密度泛函理论 (DFT) 模拟的指导下,这项工作开发了一种共钝化策略来制造砷化铟 CQD 光电探测器,该方法采用 X 型甲基乙酸铵 (MaAc) 和 Z 型配体 InBr 3 的组合。这种方法可保持电荷载流子迁移率并改善钝化效果,斯托克斯位移减少 25%,第一激子吸收线宽随时间推移的增宽率降低四倍,并使光致发光 (PL) 寿命增加一倍。所得器件在 950 nm 处显示 37% 的外部量子效率 (EQE),这是 InAs CQD 光电探测器报告的最高值。
BMEE215L工程优化3 1 0 4基本科学和数学24 BMEE330L控制系统3 0 3 0 3 L T P C BMEE308P微控制器和交互式0 0 2 1 BPHY101L工程物理学3 0 0 0 0 0 0 3 LAB BPHY101P ENGINEERING BLEN INTILLERIC Chemistry 3 0 0 3 BCHY101P Engineering Chemistry Lab 0 0 2 1 Discipline Core Courses 49 BMAT101L Calculus 3 0 0 3 BMAT101P Calculus Lab 0 0 2 1 BMEE202L Mechanics of Solids 3 0 0 3 BMAT102L Differential Equations and 3 1 0 4 BMEE202P Mechanics of Solids Lab 0 0 2 1 Transforms BMEE203L Engineering Thermodynamics 2 1 0 3 BMAT201L复杂变量和线性3 1 0 4 BMEE204L流体力学和机器3 0 0 3代数BMEE204P流体力学和机器0 0 2 1 BMAT202L概率和统计概率和统计3 0 0 0 0 3实验室BMAT202P BMAT202P概率和统计局概率0 0 2 1 BMEE 2 1 BMEE20 0 0 2 BMEE20 0 0 4 4 2
2017-2021普林斯顿大学研究生助教。SML201数据科学简介COS424机器学习CEE205 Solids的基础知识2013-2017上海Jiao Tong University的本科助教。VM382材料的机械行为VP140物理
BM019 using Non-dispersive Infra-Red Spectroscopy and Chemiluminescence Isotopic Tests Documented In-House Methods Isotopes: Sr AM005 using Thermal Ionisation Mass Spectrometry (TIMS) Chemical Tests FLEXIBLE SCOPE ENCOMPASSING: ROCKS / GEOLOGICAL MATERIALS, SEDIMENTS, SOILS, ANIMAL TISSUE, LEACHATES, WATERS, CHEMICAL PRODUCTS (Liquids, Solids, Organic,无机喂食,植物材料,作物
多体问题:1961年的讲座注释和重印卷,《摩斯鲍尔效应:综述》,带有重印集合,1962年,量子统计力学:格林在平衡和非平衡问题中的函数方法,1962年的磁性复位:入门图:1962年的入门图书,1962年[CR。(42)-2nd Edition] g。 E. Pake Concepts in Solids: Lectures on the Theory of Solids, 1963 Regge Poles and S-Matrix Theory, 1963 Electron Scattering and Nuclear and Nucleon Structure: A Collection of Reprints with an Introduction, 1963 Nuclear Theory: Pairing Force Correlations to Collective Motion, 1964 Mandelstam Theory and Regge Poles: An Introduction M. Froissart for Experimentalists, 1963 Complex Angular Momenta and Particle Physics: A Lecture Note and Reprint卷,1963年,经典流体的均衡理论:讲座注释和重印卷,1964年,《八倍的方式》(评论 - 带有转载的集合),1964年,强度相互作用物理学:讲座音符卷,1964年,
MSW Municipal solid waste AD Anaerobic digestion CC Combined cycle CHP Combined heat and power CNG Compressed natural gas CO 2 e CO 2 equivalent CRF Capital recovery factor FOG Fats, oils and grease FW Food waste GHG Greenhouse gas HRT Hydraulic retention time LCA Life cycle analysis NPV Net present value O&M Operation and maintenance PNG Pipeline natural gas RNG Renewable natural gas TMP理论甲烷产生TS总固体TS总固体百分比的总固体百分比占食品浪费美元美元美元与挥发性固体相对于挥发性固体的百分比,总固体与破坏性百分比的挥发性固体百分比破坏了wte wte浪费