本研究探讨了人工智能(AI)与有限差异方法(FDM)的整合,以增强物理,工程和数据科学中偏微分方程(PDE)的数值解决方案。传统的FDM方法,尽管有效地近似于PDE的解决方案,但由于网格大小和稳定性的限制,处理高维,非线性或计算强度问题的面临限制。AI技术,尤其是机器学习(ML)和深度学习(DL),提供了有希望的增强功能,包括适应性网格的细化,优化的时间步变和模型选择,可显着提高准确性和计算效率。使用基于Python的实现,这项研究研究了各种PDE的AI增强FDM,包括热方程,波动方程,
逆问题在许多领域都普遍存在,在医学成像[20,26],计算摄影[28,38]和地球物理学中的地震成像等领域具有重大应用[19,45]。尤其是,反问题的目的是从损坏的测量y中恢复原始信号x,这是由正向操作/测量aψ(·)生成的。逆问题通常根据ψ的可用性分为两个主要类别:非盲和盲逆问题。非盲逆问题已知已知ψ。相比之下,当ψ是未知的,需要同时提出ψ和x时,会出现盲目反对问题,这会带来更大的挑战。逆问题本质上是不适合的,通常很大程度上依赖数据先验P(X)进行准确的计算。重新说,扩散模型(DMS)已成为解决反问题的功能工具,因为它们的重新捕获复杂数据分布p(x)[9,10,13,34]。一种直接的方法来利用DMS解决反问题,涉及培训一个有条件的DM,通过监督学习直接估计后p(x | y)。但是,此方法可以是构成密集的,因为它需要为每个不同的测量操作员A单独训练DMS。为了克服这一局限性,最近的工作集中在利用预先训练的,未条件的DMS来估计先前的p(x),从而绕开了对其他模型训练的需求。在这种方法中,DMS提供的先前的P(X)与可能性P(Y | X)结合起来,以在反问题中的后验分布中采样。这些方法依赖于近似可能的项p(y | x),因为它在分析上是棘手的[9,34]。尽管如此,文献中提出的大多数逆问题解决者严格限于已知和固定测量算子Aψ的情况[9,34]。为了解决这个问题,我们提出了CL-DPS,这是一种基于C型收入来通过D iffusion p osterior s放大来解决盲逆问题的方法。具体来说,在CL-DPS中,首先使用修改版的Moco [16](一种对比度学习(CL)技术)对辅助深神经网络(DNN)进行训练。这种辅助DNN的作用是估计可能性p(y | x)的可能性,而不知道测量值Aψ。然后,在解决反问题的过程中,我们使用此辅助DNN进行推断以估计P(Y | X),然后将其用于调整扩散过程的反向路径。为了进一步提高辅助DNN在估计p(y | x)方面的准确性,我们引入了一种新颖的在推理阶段,将图像分为斑块。为了评估Cl-DPS的有效性,我们进行了Ex-
线性分式规划 (LFP) 是一种强大的数学工具,用于解决以线性函数比率为目标函数的优化问题。在实际应用中,目标函数的系数可能不确定或不精确,因此需要区间系数。本文全面研究了具有区间目标函数 (ILFTP) 的线性区间分式运输问题,这意味着目标函数中的变量系数不确定且位于给定区间内。我们提出了一种结合区间分析和优化技术来处理系数不确定性的新方法,确保解决方案稳健可靠。本研究中使用的变量变换方法是解决此类问题的一种新方法。通过将问题简化为非线性规划问题,然后将其转换为线性规划问题,所提出的方法简化了解决过程并提高了结果的准确性。通过各种数值示例和与现有方法的比较证明了所提出方法的有效性。结果表明,所提出的方法能够精确解决 ILFTP。总体而言,所提出的方法为线性分式运输问题领域做出了宝贵贡献。它为具有挑战性的问题提供了实用而有效的解决方案,并有可能应用于各种现实场景。
探索大语模型(LLM)在解决难题中的能力(LLM)宣传对AI中潜在和挑战的洞察力,这标志着将其适用于复杂的重新执行任务迈出的重要一步。这项调查利用了独特的分类法 - 将难题分为基于规则和规则的类别 - 通过各种方法进行了严格的评估LLM,包括提示技术,神经符号符号和微调。通过对相关数据集和基准测试的批判性审查,我们评估了LLMS的性能,并在复杂的难题场景中确定了重大挑战。我们的发现突出了LLM功能和类似人类的推理之间的差异,尤其是在需要先进逻辑推断的推理的情况下。该调查强调了新型策略和更丰富的数据集的必要性,以提高LLMS的拼图解决能力,并有助于AI的逻辑推理和解决问题的问题。
摘要 — 心脏数字孪生 (CDT) 是用于理解复杂心脏机制的个性化虚拟表示。CDT 开发的一个关键部分是解决 ECG 逆问题,这使得能够从体表 ECG 数据中重建心脏源并估计患者特定的电生理 (EP) 参数。尽管存在复杂的心脏解剖结构、嘈杂的 ECG 数据和逆问题的病态性质等挑战,但计算方法的最新进展极大地提高了 ECG 逆推理的准确性和效率,增强了 CDT 的保真度。本文旨在全面回顾解决 ECG 逆问题的方法、它们的验证策略、它们的临床应用及其未来前景。对于方法,我们大致将最先进的方法分为两类:确定性方法和概率方法,包括传统技术和基于深度学习的技术。将物理定律与深度学习模型相结合具有良好的前景,但诸如准确捕捉动态电生理学、获取准确的领域知识以及量化预测不确定性等挑战仍然存在。将模型集成到临床工作流程中,同时确保医疗专业人员的可解释性和可用性至关重要。克服这些挑战将推动 CDT 的进一步研究。
微塑料是微小的塑料块,它们的大小在1μm至5 mm之间,大约与芝麻种子的大小约为2。3这些微小的塑料颗粒有可能扩散到我们环境的所有角落 - 在土地,水,空气以及最终的身体。4当前的研究认为,微塑料还会在纳米级上降解为较小的颗粒,5个称为纳米塑料,在1至1000 nm的范围内测量。6无形的塑料污染是日益增长的全球关注点,正在受到政府机构和学术机构的越来越多的关注。更多地了解微塑料和纳米塑料的影响的动力源于我们对塑料污染对健康和环境的影响的缺乏专业知识。此外,对纳米塑料的后果的了解少得多,但是它们的规模和随后渗透我们生态系统中更多领域的能力意味着它们的存在可能会带来更严重的严重性。
在人类填充的环境中使用移动机器人已成为机器人技术中的关键研究领域,并体现了AI。最初,研究集中于在人类相互作用有限的结构化环境中运行的机器人。然而,随着对机器人在更具动态和不可预测的环境中的需求不断增长,研究越来越集中于改善适应性和增强人类机器人协作。Chung等。 [1]探讨了移动机器人如何自主收集和传输环境数据以支持人类活动。 各种研究人员,例如Zhang等。 [2],Trautman和Krause [3],Truong和Ngo [4],Trautman等。 [5],检查了在复杂的,以人为中心的环境中运作的移动机器人的强大导航策略。 另外,Liang等。 [6]引入了一种方法,可以通过对话处理来确定人类的动态位置。 Triebel等。 [7]开发了一个机器人的系统,以感知,学习和模拟人类的社会行为,使他们能够在互动中做出适当的实时决策。Chung等。[1]探讨了移动机器人如何自主收集和传输环境数据以支持人类活动。各种研究人员,例如Zhang等。[2],Trautman和Krause [3],Truong和Ngo [4],Trautman等。[5],检查了在复杂的,以人为中心的环境中运作的移动机器人的强大导航策略。另外,Liang等。[6]引入了一种方法,可以通过对话处理来确定人类的动态位置。Triebel等。[7]开发了一个机器人的系统,以感知,学习和模拟人类的社会行为,使他们能够在互动中做出适当的实时决策。
当前的加强学习方法无法直接学习解决最低成本触及的问题的政策,以最大程度地减少受到达到目标并避免不安全状态的限制的累积成本,因为这种新优化问题的结构与当前方法不符。相反,在将所有目标与加权总和结合在一起的情况下解决了一个替代问题。但是,这种替代目标导致次优政策不会直接最大程度地减少累积成本。在这项工作中,我们提出了RC-PPO,这是一种基于加强学习的方法,用于通过使用与汉密尔顿 - 雅各布斯的可及性的连接来解决最低成本的避免问题。经验结果表明,与现有方法相比,RC-PPO以相当的目标率学习政策,而与现有方法相比,在Mujoco Simulator上的一套最低限度到达范围的基准测试套件中的累积成本低多达57%。
Paul Simshauser ♣♠ 和 Joel Gilmore ♣ 摘要 澳大利亚电力系统规划人员的长期任务是确定与淘汰国家电力市场 (NEM) 煤炭机组相关的结构调整路径。系统规划模型力求在可靠性约束下以最低成本实现这一目标。这涉及部署低成本间歇性风能和太阳能资源以及可调度、灵活的“稳固”资产组合。因此,煤炭的能源生产角色被可再生能源取代,而稳固职责则被短时电池、中时抽水蓄能和最后一道防线——燃气轮机取代。事实证明,稳固资产的组合至关重要。在本文中,我们研究了后煤炭时代的 12 个(匿名)电力市场模型预测,发现在关键的冬季,所有这些预测都出人意料地严重依赖燃气轮机。使用东澳大利亚天然气市场的动态部分平衡模型,我们测试了新兴燃气轮机机组似乎带来的需求冲击的严重程度。偶发性需求冲击似乎难以解决,尤其是当电池和抽水蓄能电站在总发电组合中“权重不足”时。政策制定者有足够的时间有序应对。关键词:天然气市场、燃气轮机、可再生能源、稳固产能。JEL 代码:D52、D53、G12、L94 和 Q40。
Llama 3.1模型的代码生成,例如Meta的Llama 3.1 405B,代表了人工智能领域的显着进步,尤其是在自然语言处理和编程自动化方面。本文探讨了羊驼驱动的代码生成的功能和应用,突出了其将自然语言提示转换为跨模式编程语言的可执行代码的能力。关键功能包括上下文意识,多语言支持以及增强的调试和优化功能。通过检查这些方面,我们说明了美洲驼如何为各种技能水平开发人员提供多功能工具,从而提高了软件开发中生产率和效率。还讨论了对教育,行业和编码实践的未来的潜在影响,强调了编程中AI的变革性影响。实验表明,虽然Llama 3.1 405b在简单的算法和基于数据结构的问题方面表现良好,但它仍然在量子计算,生物信息学和人工智能方面的问题仍在挣扎。