作者还要感谢同行评审员对本文的投入、指导和贡献。本文的内容和结论(包括任何错误和遗漏)均由作者独自负责,同行评审员的投入并不意味着他们支持或认可这项工作。同行评审员包括 Agora Industry 的 Julian Somers 和 Niklas Wagner、清洁空气工作组的 Jonathan Lewis、清洁能源集团的 Abbe Ramanan、地球正义的 Raghu Murthy 和 Rebecca Barker、环境保护基金的 Morgan Rote、Greenlining 研究所的 Fatima Abdul-Khabir、国际清洁交通理事会的 Hussein Basma 和 Nikita Pavlenko、自然资源保护委员会的 Pete Budden、忧思科学家联盟的 Julie McNamara、劳伦斯伯克利国家实验室的 Amol Phadke 和 Nathan Iyer。
本报告是由公司可持续性实践领导的为期一年的跨学科研究工作的产物。这项研究由维也纳的高级合作伙伴Stefan Helmcke,慕尼黑的Solveigh Hieronimus,斯德哥尔摩的TomasNauclér和旧金山的Dickon Pinner领导;合作伙伴Hauke Engel在法兰克福和罗马的Paolo d'Aprile;以及阿姆斯特丹的高级专家Godart Van Gendt。项目团队由Daniel Cramer,Danielle Imperato,Daan Walter和Maaike Witteveen领导。行业团队包括Gian Dapul,Marcin Hajlasz,Saif Hameed,Alastair Hamilton和Anna Weegels。它还吸引了彼得·伯格(Peter Berg),托马斯·奇格勒(Thomas Czigler),帕特里克·格林(Patrick Green),米歇尔·范·霍伊(Michel Van Hoey),克里斯·麦克纳利(Chris McNally),肯·萨默斯(Ken Somers)和史蒂文·弗卡蒙(Steven Vercammen)的专业知识。电力队由Ying Li,Jesse
癌症,从 1 月 2 日开始 慢性健康问题:为信仰、力量、毅力和完整祈祷 Rosy Andrade、Lucy & Noah Breitwieser、Ghasem Charmsazi、Robin Dawes、Rich Jones、Judy Parker、Leah Paterson、Fatemeh Saddigh、Sylvia Scott、Ron Sonti 特殊需求、养老院、辅助生活:祈祷教会记住并照顾那些无法亲自参加礼拜的人 Betty Coleman、Frances Dawes、Joe/Nell Fitzgerald、Barbara Fountain、Norm Hughey、Audrey Pedersen、Sherry Rose、Peggy Sprinkle、Bob Tansey、Richard/Marge Upton、Kathy Valentine、Chandler/Judith Waggoner、Elizabeth West 军事服务:为他们的保护、智慧和见证祈祷 Samuel Morford,美国海军陆战队,北卡罗来纳州勒琼营 Kyle Somers(Peklo 的 SIL),空军预备役,部署安妮·戴维森·沃德(达雷尔和罗宾的女儿),
Prognostic preditions in psychosis: exploring the complementary rolls or machine learning models Violet of Dee 1.2 , Seyed Mosafa Kia 1.3.4 , Caterina Fregosi 5 , Wilma E. Switch 6.7 , Anne Alkema 1 , Albert Akema 1 , Albert Batal 1 Coen of the Berg 1 , Thank you Coctic 8 , Edwin of Dellen 1.9 , Lotte G. Thirdstra 1 , Arvia S. Dominicus 1,John Enterman 10,Border 11的Frank L.,Charlotte S. Koch 1,Lisanne E.M. Koomen 1,Mary Crome 12,Michelle Lance 1,Brian E. Euntan 1,Rappard 1的Diane F.Salette 1,Mets Somber 1,Jorgen Stralman 6,Marjolein H.T.FET 13,Judith Feought 6,Engine Winsum 1,14,RenéS。Kahn 14,Wept Cahn 1.6,Hugo G. Schnack 1.15
渔业管理专家 Somers Smott 女士介绍了休闲海鲡许可证计划的历史,该计划是应海鲡垂钓者的要求而制定的,旨在监测不断扩大的渔业,并向科学家和管理人员提供休闲渔业的数据。工作人员要求美国国家海洋和大气管理局东南渔业科学中心可持续渔业部大西洋渔业处处长兼海鲡种群评估首席建模师 Erik Williams 博士对该计划提供反馈意见。Williams 博士表示,海鲡收获报告中的报告和捕获量限制偏差使得目前的计划对种群评估用处有限,但垂钓者提供的年龄和长度数据将非常有用,特别是对于丢弃物。副局长 Shanna Madsen 提到了海鲡报告的数据准确性问题以及工作人员和垂钓者的负担。渔业管理专家 Joshua McGilly 先生提议开展一项自愿的休闲海鲡计划,以收集年龄和长度数据。McGilly 先生请委员会对新计划提出建议,并针对感兴趣的垂钓者进行推广。
程序委员会:Craig B. Arnold,普林斯顿大学(美国);马丁纳斯·贝雷斯纳大学南安普敦(英国); Laura Gemini,ALPhANOV(法国);长谷川聪,宇都宫大学中心。光学研究与教育(日本); Guido Hennig,Daetwyler Graphics AG(瑞士); Jürgen Ihlemann,哥廷根纳米光子研究所(德国);伊藤佑介,大学。东京(日本);牧村哲也,大学筑波(日本); Inka B. Manek-Hönninger 中心激光强度与应用(法国);卡洛斯·莫尔佩塞雷斯大学马德里理工大学(西班牙);米格尔·莫拉莱斯,大学。马德里理工大学(西班牙);中田芳树,大阪大学(日本); Aiko Narazaki,日本产业技术综合研究所 (日本);Beat Neuenschwander,伯尔尼高等技术学院 (瑞士);Jie Qiao,罗彻斯特理工学院 (美国);Gediminas Raciukaitis,物理科学与技术中心 (立陶宛);Joel Schrauben,MKS 仪器公司 (美国);Felix Sima,罗马尼亚国立激光、等离子体和辐射研究所 (罗马尼亚);Paul Somers,卡尔斯鲁厄理工学院 (德国);Koji Sugioka,日本理化学研究所先进光子学中心 (日本);Mitsuhiro Terakawa,庆应义塾大学 (日本);Onur Tokel,比尔肯特大学 (土耳其);Xianfan Xu,普渡大学 (美国)
一个。中校011el,医疗Oorp1,普通.A.rm.11。 1. Oirlot, Josep}l S., 20. Threadgill, l! 2. Pappas,James .P.,21 Maupin,Clinton .S.,8. WellB,Paul 0.,O! 22. 马特,乔治·J.,4. 安菲尔德,.阿诺德·L.,2.3。肯布尔,.约翰. w._ 5. 达拉,约翰 R,,, 24. 劳尔斯顿,约翰 W.,- 6. 多克。雷蒙德·埃尔 25. 米尔本, Conn L., 7. 霍兰, B. 迪克森 26. 麦克格尼, James T. 8. 费森, Thomas G. 27. 达夫利, John K. 9. 勒罗, Santino J. 28. 贝里, 威尔逊 10. 加拿大, Charles O. 29. 萨默斯, Kenneth, 1L 因曼, James G. 30. 斯尔格图斯, Edward 12. 舍勒, Andrew F. 31. 吉布森, Horace C. 13. 布莱尔, John D. 32. 德雷克, Frank R. 14. 米德, Clark B. 33. 西格尔, Jack恩,霍华德 A. 34. 文森,哈罗德 A. 16. 'n H. 315. 巴奇,约瑟夫 W. 1. 塔特梅斯 E. 36. 佩洛西,约翰 J. 1. , 奥哈德斯 H. 37. 穆尔霍尔,欧文 H. 17. 阿尔特 R. ; 38. 安斯普林切尔,威廉 H.
油菜籽在发育过程中含有叶绿素,使其呈现绿色。随着种子的成熟,它们会呈现出黑色、红褐色到黄色等颜色。黑色和红褐色种子的种皮会积累色素,而黄籽品种的种皮透明,可以露出胚的颜色。研究表明,黄籽油菜籽比黑籽品种休眠期短、发芽更简单、含油量更高,因此培育黄籽油菜籽是提高油分含量的有效方法(Yang et al.,2021)。芥菜和油菜黄籽品种的鉴别相对简单,因为纯黄色表型在遗传上是稳定的(Li et al.,2012;Chen et al.,2015)。然而,由于种皮颜色变异复杂,包括黄色中夹杂黑色斑点、斑块或棕色环等杂色,油菜种皮一直未能获得稳定的纯黄色后代,且分离后代的种皮颜色呈现连续变异(刘,1992;Auger等,2010;Qu等,2013),因此准确、高效地测定油菜种皮颜色仍是一项关键且具有挑战性的任务。许多研究涉及油菜籽颜色的鉴别(Li等,2001;Somers等,2001;Zhang等,2006;Baetzel等,2003;Tańska等,2005;Li等,2012;Liu等,2005;Ye等,2018)。例如,Li等(2001)通过目视观察来评估甘蓝型油菜的黄籽程度,这种方法简单但过于依赖观察者,导致识别可能不准确。Somers等(2001)利用光反射来评估黄籽颜色等级,通过测量反射值并计算籽粒颜色指数或光反射值。该方法虽然较为客观,但仅能捕捉亮度等单维颜色数据,忽略了原始材料的丰富信息。为了解决这一限制,许多学者致力于通过 RGB 颜色系统进行数字图像分析( Zhang et al.,2006 ; Baetzel et al.,2003 ; Ta ńska et al.,2005 ; Li et al.,2012 ; Liu et al.,2005 ; Ye et al.,2018 )。然而,油菜籽表皮颜色复杂且相似,精准识别颜色具有挑战性,现有的技术缺乏可靠性和标准化。因此,准确、有效地测量黄籽油菜的颜色仍然至关重要。化学计量学和计算机技术的最新进展导致了近红外光谱技术(NIRS)的发展,这是一种结合物体图像和光谱数据的技术。 NIRS 以其速度快、无损和高效而闻名,被广泛用于农产品的快速、无损分析。多项研究已经证明了它的实用性(Guo 等人,2019年;布等人,2023;梁等人,2023;刘等人,2021;佩蒂斯科等人,2010;森等人,2018;刘等人,2022;张等人,2020;魏等人,2020;张等人,2018;江等,2017;李等人,2022;江等,2018;他等人,2022)。例如,郭等人。 (2019) 使用 NIRS 成像系统 (380 – 1,000 nm) 来准确量化掺假大米,而 Bu 等人。 (2023) 将高光谱成像与卷积神经网络相结合,建立了高粱品种识别的智能模型,准确率超越了现有模型。该技术也已应用于油菜生长诊断。例如,刘等人 (2021) 开发了一种基于高光谱技术的检测算法来预测甘蓝型油菜中的油酸含量。Petisco 等人 (2010) 研究了甘蓝型油菜的可见光和近红外光谱。
INC 读者 #15:Chloë Arkenbout、Jack Wilson 和 Daniel de Zeeuw(编辑),《批判性模因读者:病毒图像的全球突变》,2021 年。INC 读者 #14:Geert Lovink 和 Andreas Treske(编辑),《视频漩涡读者 III:Youtube 十年内幕》,2020 年。INC 读者 #13:Miriam Rasch(编辑),《让我们变得有形》,INC 长篇样本 2015-2020,2020 年。INC 读者 #12:Loes Bogers 和 Letizia Chiappini(编辑),《批判性制造者读者:(不)学习技术》,2019 年。INC 读者 #11:Inte Gloerich、Geert Lovink 和 Patricia de Vries(编辑),《MoneyLab 读者 2:克服炒作》, 2018。INC 读者 #10:Geert Lovink、Nathaniel Tkacz 和 Patricia de Vries(编),MoneyLab 读者:数字经济中的干预,2015。INC 读者 #9:René König 和 Miriam Rasch(编),查询社会:对网络搜索的思考,2014。INC 读者 #8:Geert Lovink 和 Miriam Rasch(编),与我们不一样:社交媒体垄断及其替代品,2013。INC 读者 #7:Geert Lovink 和 Nathaniel Tkacz(编),批判观点:维基百科读者,2011。INC 读者 #6:Geert Lovink 和 Rachel Somers Miles(编),视频漩涡读者 II:超越 YouTube 的移动图像,2011。INC 读者 #5:Scott McQuire、Meredith Martin 和Sabine Niederer (eds),《城市屏幕读本》,2009 年。INC 读本 #4:Geert Lovink 和 Sabine Niederer (eds),《视频漩涡读本:对 YouTube 的回应》,2008 年。INC 读本 #3:Geert Lovink 和 Ned Rossiter (eds),《我的创造力读本:对创意产业的批判》,2007 年。INC R
来自:Melanie A. Bachman,执行董事 回复:请愿书编号 1592A – Santa Fuel, Inc. 根据康涅狄格州一般法规 §4-176 和 §16-50k 请求作出宣告性裁决,针对位于康涅狄格州萨默斯南路 159 号的 3.85 兆瓦交流太阳能光伏发电设施的拟建、维护和运营以及相关电力互连。根据康涅狄格州一般法规 §4-181a(b) 的规定,根据变更的条件重新开启此请愿书。康涅狄格州选址委员会 (Council) 将于 2025 年 1 月 8 日星期三上午 11:00 通过 Zoom 远程会议就程序问题举行预审听证会,请所有当事人和介入者参加。此次预审会议的目的是加快听证程序,同时又不牺牲理事会作出决定所需的信息记录。加入 Zoom 会议 https://us06web.zoom.us/j/87698394412?pwd=7K59mGCNUhdyBrbRh5UdAZep4g0cui.1 会议 ID:876 9839 4412 密码:bKzV8S 拨打 +1 929 205 6099 美国(纽约)会议 ID:876 9839 4412 密码:353770 在会议期间,将鼓励各方和介入者讨论预先提交的证词、证物清单、行政通知清单、预期证人名单以及提交预审质询的要求。为了节省公众的时间和费用,理事会不允许在公开听证会上直接作证。要求每一方和介入者向所有其他方和介入者提供证人名单及其预先提交的证词将涉及的主题、需要行政通知的文件清单以及将在公开听证会上提供的任何可用证物的副本。对于没有律师代理的当事人和介入者,请在证人名单中以书面形式注明谁将是公开听证会的指定代表。对于请愿人,请在证人名单中以书面形式注明谁将是下午 6:30 公众评论会议的指定发言人,以及将使用哪个场地平面图进行陈述。请将陈述的场地平面图作为单独的 pdf 提交,以便发布到理事会网站。MAB/RDM/dll