3. 更新您的商店信息,包括营业时间 要更新您的商店信息,包括营业时间,您首先要登录 Sonar Health 网站并转到“药房疫苗接种服务 2020/21”(图片 2:Sonar 药房主页),然后选择屏幕左上角的“Sonar Health”选项卡,下拉菜单随之出现。从列表中选择“个人资料”选项,然后单击每个选项卡(常规详细信息、通信、服务电子邮件、地图和最后的营业时间)。您将能够在每个选项卡上更新您的商店信息。选择“营业时间”选项卡后,您将能够自由输入具体商店的营业时间。例如,周一至周五上午 9 点至下午 5 点,周六上午 10 点至下午 2 点,周日休息。输入正确的营业时间后,单击提交,营业时间将被保存。请参阅下图(图 5)查看从选择“Sonar Health”选项卡,然后选择“个人资料”以及最后选择商店详细信息(包括营业时间)的每个步骤。
或者在本期 Baseline 中,我们邀请了特邀作者,他们讲述了如何使用 Sonardyne 技术解决海底挑战。环境解决方案专家 RPS Ocean Science 的高级科学家 Jeff Morin 介绍了如何通过充分了解海底洋流模式来极大地促进深水钻探活动的规划。但是,当您的客户希望实时恢复数据时会发生什么?您会在第 18 页的 Jeff 案例研究中找到答案。然后在第 22 页,来自 GE 集团公司的团队讨论了所有 SMART 事宜。他们解释说,为了在当今能源价格不稳定的环境中竞争,运营商和承包商可以从数据驱动的解决方案中受益,以提高他们的运营可见性,优化生命周期管理并降低维护海上设备的成本。从运营数据中获得关键见解是至关重要的第一步。如果您想在未来的期刊中介绍您的项目,请给我发送电子邮件:david.brown@sonardyne.com 今年夏天,我们看到许多重大项目正在取得成果。在第 14 页,Graham Brown 总结了 Baseline 第 12 期首次刊登的一篇报道,描述了 ETI 资助的项目从概念到碳储存完整性监测能力的演示历程。与此同时,Geraint West 在第 26 页的报道探讨了 AMT 在过去两年中如何帮助德国研究机构 GEOMAR 更好地了解板块构造
ATLAS SERVICES 不仅仅意味着提供备件、产品维护或系统使用培训。ATLAS SERVICES 提供全面而独立的服务包,可随时随地使用。我们与客户密切合作,制定最合适的服务理念,为我们在整个生命周期内为组件和系统提供密集支持奠定基础。此外,我们还为其他制造商的产品提供这种全面支持——这是我们作为系统集成商最熟悉的流程。
随着传统工业的发展和新兴工业的出现,人类对世界海洋的探索也日益加深。一个新兴且快速增长的产业是海洋可再生能源。过去几十年来,能够将溪水、波浪、风和潮汐中所含能量进行转化的技术发展速度加快。这种增长得益于社会对我们所处环境的福祉的明显认识。这使人类渴望实施能够更好地应对自然环境的技术。然而,这种环境意识也可能给新的可再生能源项目的批准带来困难,如海上风电、波浪和潮汐能发电场。从中吸取的教训是,在批准测试和部署海洋可再生能源技术的许可时,缺乏一致的环境数据可能会成为僵局。例如,欧盟的大多数成员国都要求在海洋可再生能源技术投入使用和退役时实施严格的环境监测计划。为了满足如此高的要求,同时促进海洋可再生能源行业的发展,需要建立收集多变量数据的长期环境监测框架,以持续向技术开发商、运营商以及公众提供数据。基于主动声学的技术可能是最
米 ................................................................................................................................................ 73
米 ................................................ ...................................................... ...................................................... .. 73
网络传感器系统中的分布式检测优化问题涉及许多设计方面,包括平衡漏检和误报概率以及通过适当的网络内信息融合管理通信资源。此外,还必须进行许多权衡,例如信息融合和传感器控制的计算要求与信息交换的通信要求之间的权衡。因此,最好通过共同考虑设计方面和权衡对整体系统性能的影响来做出整体系统设计决策。本文讨论了网络内融合和相关的网络算法,以提高多静态声纳应用的检测性能和能源效率。这是通过在传输到场外之前交换和融合声纳浮标之间的联系来实现的。网络内融合利用成本较低的浮标间通信进行大部分数据通信,并通过仅报告具有足够相关性的多个浮标的检测结果来减少随机不相关的误报。场外接触传输的减少允许每个浮标具有较低的信号过量阈值,从而增加检测概率。我们通过分析和高保真声纳模拟证明了分布式网络内融合的有效性。
网络传感器系统中优化分布式检测的问题涉及许多设计方面,包括平衡漏检和误报概率以及通过适当的网络内信息融合管理通信资源。此外,还必须进行许多权衡,例如信息融合和传感器控制的计算要求与信息交换的通信要求之间的权衡。因此,最好通过共同考虑设计方面和权衡对整体系统性能的影响来做出整体系统设计决策。本文讨论了网络内融合和相关的网络算法,这些算法可提高多静态声纳应用的检测性能和能源效率。这是通过在场外传输之前交换和融合声纳浮标之间的联系来实现的。网络内融合利用成本较低的浮标间通信进行大部分数据通信,并通过仅报告具有足够相关性的多个浮标的检测来减少随机不相关的误报。场外接触传输的减少允许每个浮标的信号过量阈值降低,从而增加检测概率。我们通过分析和高保真声纳模拟证明了分布式网络融合的有效性。
网络传感器系统中的分布式检测优化问题涉及许多设计方面,包括平衡漏检和误报概率以及通过适当的网络内信息融合管理通信资源。此外,还必须进行许多权衡,例如信息融合和传感器控制的计算要求与信息交换的通信要求之间的权衡。因此,最好通过共同考虑设计方面和权衡对整体系统性能的影响来做出整体系统设计决策。本文讨论了网络内融合和相关的网络算法,以提高多静态声纳应用的检测性能和能源效率。这是通过在传输到场外之前交换和融合声纳浮标之间的联系来实现的。网络内融合利用成本较低的浮标间通信进行大部分数据通信,并通过仅报告具有足够相关性的多个浮标的检测结果来减少随机不相关的误报。场外接触传输的减少允许每个浮标具有较低的信号过量阈值,从而增加检测概率。我们通过分析和高保真声纳模拟证明了分布式网络内融合的有效性。