• Up to 324 addresses for one loop • 4.3'' color screen LCD, resolution of 480×272 • Zone indication and control panel for 32 zones • Record capacity of 1000 historical events with date/time stamp • Integral printer • A standalone programmable conventional sounder circuit output • Flexible and intuitive cause and effect programming on front of panel • Output module manual start/stop facilitates the commissioning and operating • It单独支持探测器/模块测试•USB端口可以使配置数据的负载和保存方便用于系统调试和维护方便•具有三个访问级别的层次结构管理•通过键锁定的防tamper保护•可通过键锁定•可用于互连的抗tamper:可用于高达20个FACPS和ETHERNET的总线,可达255 FACPS
最近,已经启动了几种针对地球大气的远红外和微波遥感的新一代工具,使我们能够根据热发射技术观察大气成分。这些新技术和观察数据为将来更加专门的大气研究任务铺平了道路。我论文的动力是对解决大气遥感中出现的非线性反问题的强大版本算法的兴趣日益兴趣。提出了高分辨率辐射转移计算的检索代码PIL(对肢体发声的反转),并提出了来自红外和微波肢体声音测量测量的大气参数的重建。采用的前进模型通过考虑仪器性能和测量特征,以有效的方式模拟物理上现实的肢体发射光谱。尤其是,自动差异(AD)技术提供了快速可靠的确切JACOBIAN的实现,是远期模型的特殊优化功能。反转方法基本上是基于具有自适应(直接和迭代)数值正则化方法的非线性最小二乘框架。这些正则化技术的性能依赖于正规化参数选择方法的设计和A后部停止规则。检索误差的表征,包括平滑误差,噪声误差和模型参数误差,评估了正则化解决方案的准确性。关键错误来源,数据质量)。PILS与荷兰空间研究所(SRON)制定的检索代码之间的比较,处理辐射转移和倒置计算,并用预先确定的输入进行处理,旨在阐明实施的正确性和一致性。在正向模型中的小差异主要是由于连续吸收和辐射传递方程的整合而导致的。检索结果中差异的可能原因是所采用的不同反演方法(正则化,先验信息)和离散化的后果。通过分析合成和真实的辐射光谱,讨论了通过Telis(Terahertz和Simbillimimightimeter Limb Sounder)从气球传播测量(Terahertz和simbillimimightimeter Limb Sounder)中取出气体检索的结果。羟基自由基(OH)检索的灵敏度研究用于评估PIL的反演性能,并揭示Telis测量能力的初步期望(例如,此外,臭氧(O 3),氯化氢(HCl),碳碳
♦ 监测地球表面,进行海洋观测及其环境。♦ 提供大气各种气象参数的垂直剖面。♦ 提供数据收集和数据传播能力。♦ 提供卫星辅助搜索和救援服务 (SA&SR)。机载有效载荷:成像仪有效载荷、测深仪有效载荷、数据中继转发器和 SA&SR 转发器。印度工业为其制造做出了重大贡献。GSLV-F14:GSLV-F14 是印度地球同步卫星运载火箭 (GSLV) 的第 16 次飞行,也是第 10 次采用本土低温级的飞行。
摘要:在数据的空前可用性的驱动下,机器学习已成为行业和科学的普遍性和变革性技术。其对海洋科学的重要性已被赋予了联合国海洋十年的目标之一。虽然收集了增加数量的声学海洋数据以进行研究和监测目的,并且机器学习方法可以实现自动处理和分析声学数据,但它们需要由专家注释或标记的大型培训数据集。因此,解决标记数据的相对稀缺性,除了增加数据分析和处理能力外,还有主要推力区域之一。解决标签稀缺的一种方法是专家在循环的方法,它允许对有限和不平衡数据有效分析。它的优势是通过我们新颖的基于学习的深度专家框架来证明的,用于自动检测Echo Sounder数据中的湍流唤醒签名。使用机器学习算法,例如本研究中提出的算法,大大提高了分析大量声学数据的能力。这将是实现海洋科学中越来越多的声学数据的全部潜力的第一步。
积极地让居民参与交付过程,MTF和资本战略提供了战略财务框架,在中期可以实现和维持金融稳定性,以交付理事会的主要战略优先事项和服务。今年的重点是通过转型计划解决预算赤字,并使理事会重新获得更高的财务基础。1.1.2审慎法规要求理事会制定一项资本策略,该战略规定了长期背景,在该背景下,做出了资本支出决策,以证明资本支出和投资决策是符合服务目标的一致的,并正确地考虑了管理,价值,价值,保诚,可持续性,可持续性,可持续性和负担能力。
摘要 — 水下回声测深仪是水面和水下舰艇声纳套件不可或缺的一部分。这些系统通过提供船体龙骨和海底之间的实时距离来确保舰队的安全作业。本文我们报告了一种用于舰队舰艇的具有出色声学参数的浅水回声测深仪的设计和开发。原型回声测深仪的峰值发射电压响应 (TVR) 为 170 dB,接收电压灵敏度 (RVS) 为 –187 dBV/µPa,电阻抗为 193 Ω。此外,这种声学换能器的设计具有通过控制传感器几何形状来调整工作频率的灵活性。这种灵活性确保了对工作频率的控制和根据要求进行定制。关键词:浅水回声测深仪、PZT、单波束、声学匹配层、水文
最近,用于绘制海底地图的大量数据采集技术已经面世并被采用。加拿大使用的技术包括机载激光测深系统,例如由加拿大开发的由 Optech Systems 开发的 LARSEN 500 系统及其后继系统 SHOALS 系统(深度能力达 30 米);扫描系统,例如由丹麦开发的 Navitronics 系统,该系统安装在由加拿大水文服务局、加拿大公共工程部和加拿大海岸警卫队运营的几艘船上(深度能力达 100 米);以及条带测绘系统,例如由挪威开发的 Simrad EM100 多波束测深仪(深度能力达 300 米),该系统在 CSS MATTHEW 和 CSS CREED 上使用,还安装在纽芬兰 Geo Resources Inc 的遥控潜艇平台 Dolphin 的船体上。这些系统
在过去的 80 年中,探地雷达(GPR)已经从一种受质疑的冰川探测器发展成为一种完整的多分量 3D 体积成像和表征设备。该工具可以校准,以便定量估计水含量等物理特性。由于其高分辨率,GPR 是量化地下异质性的宝贵工具,并且它能够看到非金属和金属物体,使其成为一种有用的测绘工具,可以检测、定位和表征埋藏物体。没有一种工具可以解决所有问题;因此,要确定 GPR 是否适用于给定问题,研究失败的原因可以提供对基础知识的理解,这反过来又可以帮助确定 GPR 是否适用于给定问题。我们讨论了钻孔雷达的具体方面,并描述了最近的发展,以提高灵敏度
1。简介国家航空和太空行政管理已宣布打算对火星行星进行新的任务。火星观察者是一项低成本的任务,重点是对火星地理学和气候学研究,并利用商业上可用的航天器。单个航天器将于1990年推出,并将在1991年进入火星周围的361 km高度轨道。本文中描述的压力调节器红外辐射计(PMIRR)已被选为火星观察员任务,并正在喷射推进实验室中开发。PMIRR是一个九通道的肢体,纳迪尔扫描大气声音符合签名,以解决该任务的气候科学目标。这些是在季节性周期内确定火星挥发性材料和灰尘的时间和空间分布,丰度,来源和水槽,并探索火星大气循环的结构和方面。PMIRR采用过滤器和气体相关辐射指定,主要用于绘制从表面至80 km的大气的3-D时间依赖的热结构,这是大气中的灰尘负荷 -