抽象的背景关节软骨(AC)的主要功能是抵抗应力的机械环境,而chon-drocytes正在响应该组织的发育和稳态的机械应力。然而,目前关于响应机械刺激的过程的知识仍然有限。这些机制是在工程软骨模型中进行研究的,其中软骨细胞包含在外生的生物物质中与其自然细胞外基质不同。本研究的目的是更好地了解机械刺激对间充质基质细胞(MSC)衍生的软骨细胞的影响。方法,使用了一种流体定制装置,用于机械刺激通过在软骨培养培养基中培养从人类MSC获得的软骨微粒,持续21天。将六个微粒放在设备室的孔孔中,并用不同的正压信号(振幅,频率和持续时间)刺激。使用一个摄像机记录每个微细胞的沉没到它们的锥体中,并使用有限元模型分析了微孔变形。微粒。结果在刺激过程中使用平方压力信号的刺激中观察到中等微粒的变形,因为平均von mises菌株在6.39至14.35%之间,估计幅度为1.75–14 kPa的幅度叠加在幅度50%的基础压力上。在变形过程中观察到的压缩,张力和剪切不会改变微粒微结构,如组织学染色所示。在单个30分钟的刺激下,在1 Hz的最小压力上叠加了3.5 kPa振幅的平方压信号,在1 hz的最小压力上叠加了30分钟的刺激后,测量了Chon-Drocyte标记(SOX9,AGG和COL2B)的表达迅速而瞬时的增加。使用平方压力信号而不是恒定压力信号时,周期性变形的1%变化会诱导软骨基因表达2至3的倍数变化。此外,除了Col X外,纤维球杆菌(Col I)或肥厚软骨(Col X,MMP13和ADAMTS5)的表达没有显着调节。结论我们的数据表明,通过基于流体的压缩的软骨微细胞的动态变形调节了负责产生类似软骨样的软骨细胞基因的表达。
黑色素瘤细胞的抽象背景表型异质性有助于耐药性,增加的转移和免疫逃避性疾病。各自的机制已被据报道,以塑造广泛的肿瘤内和肿瘤间表型异质性,例如IFNγ信号传导和对侵入性过渡的增殖,但是它们的串扰如何影响肿瘤的进展仍然很大程度上难以捉摸。在这里,我们将动态系统建模与散装和单细胞水平的转录组数据分析整合在一起,以研究黑色素瘤表型异质性背后的基本机制及其对适应靶向治疗和免疫检查点抑制剂的影响。我们构建了一个最小的核心监管网络,该网络涉及与此过程有关的转录因子,并确定该网络启用的表型景观中的多个“吸引子”。在三种黑色素瘤细胞系(Malme3,SK-MEL-5和A375)中,通过IFNγ信号传导和增生对浸润性转变对PD-L1的协同控制进行了模型预测。结果我们证明,包括MITF,SOX10,SOX9,JUN和ZEB1的调节网络的新兴动态可以概括有关多种表型共存的实验观察结果(增殖性,神经CREST,类似于神经crest,类似于Invasive),以及可转化的细胞检查和响应的响应,包括对响应的响应,并在响应中进行了响应,并在响应中置于某些响应中,并在构成方面构成了对响应的响应。这些表型具有不同水平的PD-L1,在免疫抑制中驱动异质性。PD-L1中的这种异质性可以通过这些调节剂与IFNγ信号的组合动力学加剧。我们关于黑色素瘤细胞逃避靶向治疗和免疫检查点抑制剂的侵入性转变和PD-L1水平的变化的模型预测在来自体外和体内实验的多个RNA-SEQ数据集中得到了验证。结论我们的校准动力学模型提供了一个测试组合疗法的平台,并为转移性黑色素瘤的治疗提供了理性的途径。可以利用对PD-L1表达,侵入性过渡和IFNγ信号传导增殖的串扰的改进理解,以改善对治疗耐药和转移性黑色素瘤的临床管理。
1。Lamb AN,Rosenfeld JA,Neill NJ等。 在12p12.1时Sox5的单倍不足与具有明显的行为延迟,行为问题和轻度畸形特征的发育延迟有关。 嗡嗡声突变。 2012; 33:728-740。 2。 Aza-Carmona M,Shears DJ,Yuste-Checa P等。 shox与软骨的转录因子Sox5和Sox6相互作用,以使Aggrecan增强剂作用。 hum mol Genet。 2011; 20:1547-1559。 3。 Harley VR,Clarkson MJ,Argentaro A. 睾丸确定因子的分子作用和调节,SRY(Y染色体上的性别确定区域)和Sox9 [与SRY相关的高弹性组(HMG)Box 9]。 Endocr Rev。 2003; 24:466-487。 4。 Truebestein L,Leonard TA。 盘绕螺旋:长而短。 生物评估。 2016; 38:903-916。 5。 Ikeda T,Zhang J,Chano T等。 识别和表征人类长的SOX5(L-SOX5)基因。 基因。 2002; 298:59-68。 6。 Wu L,Yang Z,Dai G等。 SOX5通过调节膀胱癌的DNMT1/P21途径来促进细胞的生长和迁移。 Acta Biochim Biophys罪。 2022; 54:987-998。 7。 Kwan KY,Lam MM,Krsnik Z等。 SOX5在森林中进行了森林,迁移,迁移后分化以及子板和深层新皮质神经元的投影。 Proc Natl Acad Sci u s a。 2008; 105:16021-16026。 8。 神经元。Lamb AN,Rosenfeld JA,Neill NJ等。在12p12.1时Sox5的单倍不足与具有明显的行为延迟,行为问题和轻度畸形特征的发育延迟有关。嗡嗡声突变。2012; 33:728-740。2。Aza-Carmona M,Shears DJ,Yuste-Checa P等。shox与软骨的转录因子Sox5和Sox6相互作用,以使Aggrecan增强剂作用。hum mol Genet。2011; 20:1547-1559。3。Harley VR,Clarkson MJ,Argentaro A. 睾丸确定因子的分子作用和调节,SRY(Y染色体上的性别确定区域)和Sox9 [与SRY相关的高弹性组(HMG)Box 9]。 Endocr Rev。 2003; 24:466-487。 4。 Truebestein L,Leonard TA。 盘绕螺旋:长而短。 生物评估。 2016; 38:903-916。 5。 Ikeda T,Zhang J,Chano T等。 识别和表征人类长的SOX5(L-SOX5)基因。 基因。 2002; 298:59-68。 6。 Wu L,Yang Z,Dai G等。 SOX5通过调节膀胱癌的DNMT1/P21途径来促进细胞的生长和迁移。 Acta Biochim Biophys罪。 2022; 54:987-998。 7。 Kwan KY,Lam MM,Krsnik Z等。 SOX5在森林中进行了森林,迁移,迁移后分化以及子板和深层新皮质神经元的投影。 Proc Natl Acad Sci u s a。 2008; 105:16021-16026。 8。 神经元。Harley VR,Clarkson MJ,Argentaro A.睾丸确定因子的分子作用和调节,SRY(Y染色体上的性别确定区域)和Sox9 [与SRY相关的高弹性组(HMG)Box 9]。Endocr Rev。2003; 24:466-487。 4。 Truebestein L,Leonard TA。 盘绕螺旋:长而短。 生物评估。 2016; 38:903-916。 5。 Ikeda T,Zhang J,Chano T等。 识别和表征人类长的SOX5(L-SOX5)基因。 基因。 2002; 298:59-68。 6。 Wu L,Yang Z,Dai G等。 SOX5通过调节膀胱癌的DNMT1/P21途径来促进细胞的生长和迁移。 Acta Biochim Biophys罪。 2022; 54:987-998。 7。 Kwan KY,Lam MM,Krsnik Z等。 SOX5在森林中进行了森林,迁移,迁移后分化以及子板和深层新皮质神经元的投影。 Proc Natl Acad Sci u s a。 2008; 105:16021-16026。 8。 神经元。2003; 24:466-487。4。Truebestein L,Leonard TA。盘绕螺旋:长而短。生物评估。2016; 38:903-916。 5。 Ikeda T,Zhang J,Chano T等。 识别和表征人类长的SOX5(L-SOX5)基因。 基因。 2002; 298:59-68。 6。 Wu L,Yang Z,Dai G等。 SOX5通过调节膀胱癌的DNMT1/P21途径来促进细胞的生长和迁移。 Acta Biochim Biophys罪。 2022; 54:987-998。 7。 Kwan KY,Lam MM,Krsnik Z等。 SOX5在森林中进行了森林,迁移,迁移后分化以及子板和深层新皮质神经元的投影。 Proc Natl Acad Sci u s a。 2008; 105:16021-16026。 8。 神经元。2016; 38:903-916。5。Ikeda T,Zhang J,Chano T等。 识别和表征人类长的SOX5(L-SOX5)基因。 基因。 2002; 298:59-68。 6。 Wu L,Yang Z,Dai G等。 SOX5通过调节膀胱癌的DNMT1/P21途径来促进细胞的生长和迁移。 Acta Biochim Biophys罪。 2022; 54:987-998。 7。 Kwan KY,Lam MM,Krsnik Z等。 SOX5在森林中进行了森林,迁移,迁移后分化以及子板和深层新皮质神经元的投影。 Proc Natl Acad Sci u s a。 2008; 105:16021-16026。 8。 神经元。Ikeda T,Zhang J,Chano T等。识别和表征人类长的SOX5(L-SOX5)基因。基因。2002; 298:59-68。 6。 Wu L,Yang Z,Dai G等。 SOX5通过调节膀胱癌的DNMT1/P21途径来促进细胞的生长和迁移。 Acta Biochim Biophys罪。 2022; 54:987-998。 7。 Kwan KY,Lam MM,Krsnik Z等。 SOX5在森林中进行了森林,迁移,迁移后分化以及子板和深层新皮质神经元的投影。 Proc Natl Acad Sci u s a。 2008; 105:16021-16026。 8。 神经元。2002; 298:59-68。6。Wu L,Yang Z,Dai G等。SOX5通过调节膀胱癌的DNMT1/P21途径来促进细胞的生长和迁移。Acta Biochim Biophys罪。2022; 54:987-998。7。Kwan KY,Lam MM,Krsnik Z等。 SOX5在森林中进行了森林,迁移,迁移后分化以及子板和深层新皮质神经元的投影。 Proc Natl Acad Sci u s a。 2008; 105:16021-16026。 8。 神经元。Kwan KY,Lam MM,Krsnik Z等。SOX5在森林中进行了森林,迁移,迁移后分化以及子板和深层新皮质神经元的投影。Proc Natl Acad Sci u s a。2008; 105:16021-16026。 8。 神经元。2008; 105:16021-16026。8。神经元。Lai T,Jabaudon,BJ和Al。 SOX5皮质果神经元神经元的依次属。 2008; 57:232-247。 9。 Martin-Mors PL,AC女王,倒钩,道德AV。 sox5按照wnt-beta诱导的途径符合这种新进展的这种进展。 REP。 2010; 11:466-4 10。 问题交流,Stolt CC,Coral R和Al。 neu-robiol必须 2015; 75:522-538。 11。 li,menine menendize c,garci-corse l和al。 我们需要新的成年干细胞操作。 rep眼。 2022; 38:1 12。 Edgerley K,Bryson L,Hanington L和Al。 SOX5:综合征Shaffer进一步消耗了进一步的扩展现象。 am j with genet a 2023; 191:1447-1458。 13。 扬声器M,Na和Al。 变体解释使用人群数据:第一GMMAD。 Mutat的Hum 2022; 43:1012-1 14。 Rentzsch P,Schubma M,Shendure J,Kirker M. Cadd-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity the Genome vide变体变体预测,使用传递深度分数。 基因组医学。 2021; 13:31。 15。 ioannidis NM,Rothstein JH,Pejaver V和Al。 reve:变体的致病性。 am j hum genet 2016; 99:877-885。Lai T,Jabaudon,BJ和Al。SOX5皮质果神经元神经元的依次属。2008; 57:232-247。 9。 Martin-Mors PL,AC女王,倒钩,道德AV。 sox5按照wnt-beta诱导的途径符合这种新进展的这种进展。 REP。 2010; 11:466-4 10。 问题交流,Stolt CC,Coral R和Al。 neu-robiol必须 2015; 75:522-538。 11。 li,menine menendize c,garci-corse l和al。 我们需要新的成年干细胞操作。 rep眼。 2022; 38:1 12。 Edgerley K,Bryson L,Hanington L和Al。 SOX5:综合征Shaffer进一步消耗了进一步的扩展现象。 am j with genet a 2023; 191:1447-1458。 13。 扬声器M,Na和Al。 变体解释使用人群数据:第一GMMAD。 Mutat的Hum 2022; 43:1012-1 14。 Rentzsch P,Schubma M,Shendure J,Kirker M. Cadd-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity the Genome vide变体变体预测,使用传递深度分数。 基因组医学。 2021; 13:31。 15。 ioannidis NM,Rothstein JH,Pejaver V和Al。 reve:变体的致病性。 am j hum genet 2016; 99:877-885。2008; 57:232-247。9。Martin-Mors PL,AC女王,倒钩,道德AV。sox5按照wnt-beta诱导的途径符合这种新进展的这种进展。REP。 2010; 11:466-4 10。 问题交流,Stolt CC,Coral R和Al。 neu-robiol必须 2015; 75:522-538。 11。 li,menine menendize c,garci-corse l和al。 我们需要新的成年干细胞操作。 rep眼。 2022; 38:1 12。 Edgerley K,Bryson L,Hanington L和Al。 SOX5:综合征Shaffer进一步消耗了进一步的扩展现象。 am j with genet a 2023; 191:1447-1458。 13。 扬声器M,Na和Al。 变体解释使用人群数据:第一GMMAD。 Mutat的Hum 2022; 43:1012-1 14。 Rentzsch P,Schubma M,Shendure J,Kirker M. Cadd-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity the Genome vide变体变体预测,使用传递深度分数。 基因组医学。 2021; 13:31。 15。 ioannidis NM,Rothstein JH,Pejaver V和Al。 reve:变体的致病性。 am j hum genet 2016; 99:877-885。REP。2010; 11:466-410。问题交流,Stolt CC,Coral R和Al。neu-robiol必须2015; 75:522-538。11。li,menine menendize c,garci-corse l和al。我们需要新的成年干细胞操作。rep眼。2022; 38:112。Edgerley K,Bryson L,Hanington L和Al。 SOX5:综合征Shaffer进一步消耗了进一步的扩展现象。 am j with genet a 2023; 191:1447-1458。 13。 扬声器M,Na和Al。 变体解释使用人群数据:第一GMMAD。 Mutat的Hum 2022; 43:1012-1 14。 Rentzsch P,Schubma M,Shendure J,Kirker M. Cadd-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity the Genome vide变体变体预测,使用传递深度分数。 基因组医学。 2021; 13:31。 15。 ioannidis NM,Rothstein JH,Pejaver V和Al。 reve:变体的致病性。 am j hum genet 2016; 99:877-885。Edgerley K,Bryson L,Hanington L和Al。SOX5:综合征Shaffer进一步消耗了进一步的扩展现象。am j with genet a2023; 191:1447-1458。13。扬声器M,Na和Al。变体解释使用人群数据:第一GMMAD。Mutat的Hum2022; 43:1012-114。Rentzsch P,Schubma M,Shendure J,Kirker M. Cadd-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity-Splicity the Genome vide变体变体预测,使用传递深度分数。基因组医学。2021; 13:31。15。ioannidis NM,Rothstein JH,Pejaver V和Al。reve:变体的致病性。am j hum genet2016; 99:877-885。2016; 99:877-885。16。Macnee M,Perez-Palma E,Brunger T等。cnv-clinviewer:在线增强对大型拷贝数变体的临床解释。生物信息学。2023; 39:1-6。
