农民和农学家通过计算相对较小区域的植株数、每株豆荚数和每豆荚种子数,并推断整个田地面积,来估算大豆 (Glycine max) 的产量。这些信息虽然有趣,但却是劳动密集型的,在应用于整个田地规模时可能无法提供有用和准确的信息。例如,de Souza 等人。(2023) 报告称,要评估植物的表型特征,应评估 2.7 平方米区域内 21 株大豆植物的四个性状。但是,当这种为小块地设计的采样方案扩展到可能大于 650,000 平方米 (65 公顷) 的田地时,采样要求很快就会变得难以管理。因此,精准农业需要一种替代方法来估算大豆产量。
Meet the Team Soybeans Conventional Soybean Varieties Traited Soybean Varieties Seed Treatments Seeding Rates Optimum Planting Date Seeds per Foot Row Seeding Depth Maturity Map Yield Potential IP Soybean Program Winter Wheat Varieties Seeding Rates Seeds per Foot Row Seeding Depth Optimum Planting Date Seed Treatments Winter Barley Varieties Spring Cereals Spring Wheat Varieties Oat Varieties Barley Varieties Common Blends植物种群每英尺排的种子每英亩覆盖农作物的种子建议的播种率覆盖作物的好处
全基因组关联研究 (GWAS) 可以识别与性状相关的基因座,但识别致病基因可能是一个瓶颈,部分原因是连锁不平衡 (LD) 衰减缓慢。全转录组关联研究 (TWAS) 通过识别基因表达-表型关联或将基因表达数量性状基因座与 GWAS 结果整合来解决这一问题。在这里,我们使用自花授粉大豆 (Glycine max [L.] Merr.) 作为模型来评估 TWAS 在 LD 衰减缓慢的植物物种性状遗传解析中的应用。我们为大豆多样性面板生成了 RNA 测序数据,并识别了 29 286 个大豆基因的遗传表达调控。不同的 TWAS 解决方案受 LD 的影响较小,并且对表达源具有稳健性,可以识别与来自不同组织和发育阶段的性状相关的已知基因。通过 TWAS 鉴定出新的豆荚颜色基因 L2,并通过基因组编辑对其进行了功能验证。通过引入新的外显子比例特征,我们显著提高了由结构变异和可变剪接导致的表达变异的检测。因此,通过我们的 TWAS 方法鉴定出的基因表现出多种多样的因果变异,包括 SNP、插入或缺失、基因融合、拷贝数变异和可变剪接。使用这种方法,我们鉴定出与开花时间相关的基因,包括以前已知的基因和以前未与此特性关联的新基因,从而为 GWAS 的见解提供了补充。总之,这项研究支持将 TWAS 应用于 LD 衰减率较低的物种的候选基因鉴定。
摘要:种子糖成分,主要包括果糖,葡萄糖,蔗糖,raf鼻和stachyose,是大豆[甘氨酸Max(L.)Merr。]种子质量。但是,对大豆糖成分的研究是有限的。为了更好地了解大豆种子中糖成分的遗传结构,我们使用了323个大豆种质添加剂的种群进行了全基因组关联研究(GWAS),这些研究在三种不同的环境下进行了生长和评估。在GWAS中选择并使用了总计31,245个单核苷酸多态性(SNP)≥5%(MAFS)≥5%,缺少数据≤10%。与单个糖相关的分析72定量性状基因座(QTL),与总糖相关的14个。在六个染色体的铅SNP的100 kb旋转区域内的十个候选基因与糖含量显着相关。根据GO和KEGG分类,大豆中的糖代谢涉及八个基因,并在拟南芥中显示出相似的功能。另外两个位于与糖相关的已知QTL区域中,可能在大豆的糖代谢中发挥作用。这项研究促进了我们对大豆糖组成的遗传基础的理解,并促进了控制这种特征的基因的鉴定。认同的候选基因将有助于改善大豆中的种子糖成分。
摘要:尽管大豆蛋白质量很高,但由于 Kunitz (KTi) 和 Bowman-Birk 蛋白酶抑制剂 (BBis) 的存在,生大豆和豆粕不能直接添加到动物饲料混合物中,这会降低动物的生产率。热处理可以显著灭活胰蛋白酶和糜蛋白酶抑制剂 (BBis),但这种处理耗能大、成本高,并对种子蛋白的质量产生负面影响。作为一种替代方法,我们采用 CRISPR/Cas9 基因编辑来在 BBi 基因中产生突变,从而大幅降低大豆种子中的蛋白酶抑制剂含量。农杆菌介导的转化被用于产生几个稳定的转基因大豆事件。使用 Sanger 测序、蛋白质组学分析、胰蛋白酶/糜蛋白酶抑制剂活性测定和 qRT-PCR 将这些独立的 CRISPR/Cas9 事件与野生型植物进行了比较。总的来说,我们的结果表明,影响大豆主要 BBi 基因的一系列等位基因功能丧失突变的产生。两个高表达种子特异性 BBi 基因的突变导致胰蛋白酶和糜蛋白酶抑制剂活性大幅降低。
全球气候变化对农作物的生长,发育和产量产生了重大影响。中国东北部的大豆生产是中国传统的大豆生产地区之一,对于发展国内大豆工业并减少对进口大豆的依赖而言,具有很大的意义。因此,评估未来气候变化对中国东北大豆产量的影响至关重要,并提出合理的适应措施。在这项研究中,我们以中国东北部的富吉恩市为例,并使用了DSSAT中的Cropgro-Soybean模型(农业技术转移的决策支持系统)模拟未来气候变化对2020年代四个时期(2021-2030)的四个时期的大豆产量的影响(2041-2050)和2050S(2051-2060)在两个代表性浓度途径(RCP)方案(RCP4.5和RCP8.5)下,进一步确定最佳的农艺管理实践。结果表明,校准和经过验证的模型适合在研究区域模拟大豆。通过分析未来气候场景RCP4.5和RCP8.5在Precis区域气候模型中的气象数据,我们发现,在海伦吉安吉安吉省富士城的生长季节,平均温度,累积降水量和累积太阳辐射将主要增加。与模型仿真结果结合在一起,表明在CO 2受精的效果下,未来的气候变化将对大豆产量产生积极影响。与基线(1986-2005)相比,大豆产量将增加0.6%(7.4%),3.3%(5.1%),6.0%(16.8%)和12.3%(20.6%)和2020年代,2030年代,2040年代,2040年代和2050年度的rcp4.5(RCP4.5)(rcp8.5)。 RCP4.5(RCP8.5)分别为5月10日(5月5日)和50 mm(40mm)。在未来的气候条件下,农艺管理实践,例如在大豆增长的关键阶段推进播种日期和补充灌溉,将增加大豆产量,并使大豆增长更适合未来的气候变化。
。CC-BY-NC-ND 4.0 国际许可,根据 提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 7 月 26 日发布。;https://doi.org/10.1101/2024.07.25.605222 doi:bioRxiv 预印本
体外和体外农杆菌介导的毛状根转化 (HRT) 测定是植物生物技术和功能基因组学工具包的关键组成部分。在本报告中,使用 RUBY 报告基因优化了大豆的体外和体外 HRT。评估了不同的参数,包括农杆菌菌株、细菌细胞培养物的光密度 (OD 600 )、共培养基、大豆基因型、外植体年龄以及乙酰丁香酮的添加和浓度。总体而言,就毛状根和转化根(表达 RUBY )的诱导百分比而言,体外测定比体外测定更有效。尽管如此,体外技术被认为更快且方法更简单。在 cv 的 7 天大子叶上观察到了 RUBY 的最高转化。 Bert 用 R1000 接种 30 分钟,R1000 悬浮在 ¼ B5 培养基中,OD 为 600 (0.3),乙酰丁香酮含量为 150 µM。该测定的参数还通过两步体外毛状根转化获得了最高百分比的 RUBY。最后,使用基于机器学习的建模,进一步确定了两种测定的最佳方案。本研究建立了适用于大豆功能研究的高效可靠的毛状根转化方案。
摘要:脱落酸(ABA)是一种重要的植物激素,参与调节植物生长、发育和逆境响应中的多种功能。多种蛋白质参与调控环境胁迫下ABA信号转导机制,其中PYR1/PYL/RCAR家族为ABA受体。本研究利用CRISPR/Cas9基因编辑系统和单个gRNA敲除大豆三个PYL基因:GmPYL17、GmPYL18和GmPYL19。T0代植株基因分型结果显示,gRNA可有效敲除GmPYL17、GmPYL18和GmPYL19基因靶序列,并使其发生不同程度的缺失。一组诱导的等位基因被成功转移到后代。在T2代,我们获得了双重和三重突变的基因型。在种子萌发阶段,CRISPR/Cas9技术制备的GmPYL基因敲除突变体,尤其是gmpyl17/19双突变体对脱落酸的敏感性低于野生型。利用RNA-Seq技术,通过3个生物学重复研究不同处理下萌发幼苗对脱落酸反应相关的差异表达基因。gmpyl17/19-1双突变体种子萌发过程中对脱落酸的敏感性降低,突变株高和分枝数高于野生型。在脱落酸胁迫下,GO富集分析显示一些正向萌发调控因子被激活,降低了脱落酸敏感性,促进了种子萌发。本研究为从分子水平上深入研究脱落酸信号通路及其关键成分的参与提供了理论基础,有助于提高大豆对非生物胁迫的耐受性,同时也有助于育种者调控和提高大豆在不同胁迫条件下的产量和品质。
