从遥感图像中自动提取建筑物轮廓线已用于更新城市地区的地理空间数据库 [1]。高分辨率星载立体 (HRSS) 传感器(例如 GeoEye、WorldView、QuickBird)的发射开启了一个新时代,提供了从太空获取立体图像和 3D 地图的可能性 [2]。事实上,建筑物识别、重建和变化检测已经使用立体图像匹配以及 3D 边缘匹配技术进行 [3,5-6]。如 [3] 所述,基于立体图像的 3D 边缘匹配提供了有希望的结果,但前提是建筑物在数据的空间分辨率方面足够大、具有简单的矩形形状并且与周围物体相比具有良好的辐射对比度。事实上,虽然使用非常高分辨率的航空图像进行 3D 边缘匹配可以详细重建建筑物轮廓线 [7],但使用星载图像,同样的方法可能会遇到问题,特别是在两幅对极图像中都无法清晰检测到建筑物轮廓的情况下。此外,虽然影像匹配提供了代表建筑物高度的DSM,但是从该DSM提取的建筑物大小和形状通常被高估,因此需要辅助信息。
从遥感图像中自动提取建筑物轮廓线已用于更新城市地区的地理空间数据库 [1]。高分辨率星载立体 (HRSS) 传感器(例如 GeoEye、WorldView、QuickBird)的发射开启了一个新时代,提供了从太空获取立体图像和 3D 地图的可能性 [2]。事实上,建筑物识别、重建和变化检测已经使用立体图像匹配以及 3D 边缘匹配技术进行 [3,5-6]。如 [3] 所述,基于立体图像的 3D 边缘匹配提供了有希望的结果,但前提是建筑物在数据的空间分辨率方面足够大、具有简单的矩形形状并且与周围物体相比具有良好的辐射对比度。事实上,虽然使用非常高分辨率的航空图像进行 3D 边缘匹配可以详细重建建筑物轮廓线 [7],但使用星载图像,同样的方法可能会遇到问题,特别是在两幅对极图像中都无法清晰检测到建筑物轮廓的情况下。此外,虽然影像匹配提供了代表建筑物高度的DSM,但是从该DSM提取的建筑物大小和形状通常被高估,因此需要辅助信息。
从遥感图像中自动提取建筑物轮廓线已用于更新城市地区的地理空间数据库 [1]。高分辨率星载立体 (HRSS) 传感器(例如 GeoEye、WorldView、QuickBird)的发射开启了一个新时代,提供了从太空获取立体图像和 3D 地图的可能性 [2]。事实上,建筑物识别、重建和变化检测已经使用立体图像匹配以及 3D 边缘匹配技术进行 [3,5-6]。如 [3] 所述,基于立体图像的 3D 边缘匹配提供了有希望的结果,但前提是建筑物在数据的空间分辨率方面足够大、具有简单的矩形形状并且与周围物体相比具有良好的辐射对比度。事实上,虽然使用非常高分辨率的航空图像进行 3D 边缘匹配可以详细重建建筑物轮廓线 [7],但使用星载图像,同样的方法可能会遇到问题,特别是在两幅对极图像中都无法清晰检测到建筑物轮廓的情况下。此外,虽然影像匹配提供了代表建筑物高度的DSM,但是从该DSM提取的建筑物大小和形状通常被高估,因此需要辅助信息。
区域当局需要有关森林状况的详细地理参考信息,以确保可持续的森林管理。森林资源清查受到资源密集型实地工作的限制,而遥感 (RS) 则提供快速、可靠且可复制的数据收集和处理。近年来,结合机载激光扫描 (ALS) 数据和合成孔径雷达 (SAR) 数据的研究活动有所增加。本研究的总体目标是结合机载激光雷达数据、光学卫星数据和雷达卫星数据来估计位于中欧的异质森林的立木量。对综合森林管理单位 FMU Vígľaš(斯洛伐克)进行了案例研究。具体而言,机载和星载数据集的组合包含以下步骤:(1)基于 ALS 的建模 - 基于 ALS 的冠层高度模型的指标与测量的立木蓄积量,(2)基于 ALS 的测绘 - 使用基于 ALS 的模型估算 FMU 级别的立木蓄积量,(3)基于 SAT 的建模 - 基于 SAT 的数据集的指标与基于 ALS 的立木蓄积量估计值,(4)基于 SAT 的测绘 - 使用基于 SAT 的模型估算 FMU 级别的立木蓄积量,(5)精度评估 - 将 ALS 和 SAT 估计的立木蓄积量与 45 个异质测试地块内的地面参考数据进行比较。基于 ALS 的立木蓄积量是基于以平均冠层高度为预测因子的简单线性回归模型估算的。该模型实现了
未来的太空任务可以从机载图像处理中受益,以检测科学事件、产生见解并自主响应。这一任务概念面临的挑战之一是传统的太空飞行计算能力有限,因为它是从更古老的计算中衍生出来的,以确保在太空的极端环境下(特别是辐射)的可靠性能。现代商用现货处理器,如 Movidius Myriad X 和 Qualcomm Snapdragon,在小尺寸、重量和功率封装方面有显著改进;它们为深度神经网络提供直接硬件加速,尽管这些处理器没有经过辐射加固。我们在国际空间站 (ISS) 上的惠普企业星载计算机-2 托管的这些处理器上部署了神经网络模型。我们发现,Myriad 和 Snapdragon 数字信号处理器 (DSP)/人工智能处理器 (AIP) 在所有情况下都比 Snapdragon CPU 速度更快,单像素网络除外(DSP/AIP 通常快 10 倍以上)。此外,通过量化和移植我们的喷气推进实验室模型而引入的差异通常非常低(不到 5%)。模型运行多次,并部署了内存检查器来测试辐射效应。到目前为止,我们发现地面和 ISS 运行之间的输出没有差异,也没有内存检查器错误。
基于微波辐射与降水相互作用的基本关系,微波卫星降水估计最有望从太空定量估计降雨量。目前,DMSP 专用传感器微波成像仪 (SSM/I) 上的低分辨率通道采样的空间分辨率比典型对流雨带中降雨产生的尺度大几倍。机载仪器可以提供降水云的详细微波辐射特性视图。在本文中,作者展示了 1993 年在西太平洋进行的热带海洋全球大气耦合海洋-大气响应实验期间收集的同步精细尺度(1-3 公里分辨率)共置飞机辐射和飞机降水雷达测量值。通过故意将飞机数据集的分辨率从其原始分辨率降低到当前和未来的星载传感器的分辨率,检查了传感器分辨率对组合辐射计-雷达垂直剖面降雨反演算法(为降水比对计划 2 开发和使用)的影响。雷达剖面的增加对柱状霰含量的反演值的影响大于柱状雨含量。柱状霰的反演值也明显小于之前公布的陆地降雨结果。结果
1 日本遥感技术中心,东急 REIT 虎之门大厦 3F,日本东京都港区 3-17-1 – (takaku, fumi_og, dotsu_masanori)@restec.or.jp 2 日本宇宙航空研究开发机构地球观测研究中心,日本茨城县筑波市浅间 2-1-1 – tadono.takeo@jaxa.jp 委员会 IV,工作组 IV/3 关键词:三线、立体、卫星、光学、高分辨率、DEM/DTM 摘要:2016 年,我们首次使用来自先进陆地观测卫星 (ALOS) 上的立体测绘全色遥感仪 (PRISM) 的立体影像整个档案完成了数字表面模型 (DSM) 的全球数据处理。该数据集以 30 米网格间距免费向公众发布,名为“ALOS World 3D - 30m (AW3D30)”,该数据集由其原始版本生成,该版本以 5 米或 2.5 米网格间距处理。此后,该数据集已更新,通过额外的校准提高了绝对/相对高度精度。但是,应应用最重要的更新来提高数据可用性,即填充空白区域,这相当于约全球覆盖率的 10%,主要是由于云层覆盖。本文介绍了 AW3D30 的更新,通过与其他开放获取 DSM(如航天飞机雷达地形测绘任务 (SRTM) 数字高程模型 (DEM)、先进星载热辐射和反射辐射计全球 DEM (ASTER GDEM)、ArcticDEM 等)之间的相互比较,填补了这些数据集的空白。
4AOP 自动大气吸收图集操作版本 6SV1 太阳光谱中卫星信号的第二次模拟,版本 1 ASCII 美国信息交换标准代码 ANOVA 方差分析 ASTER 先进星载热发射和反射辐射计 BRDF 双向反射分布函数 CASI 紧凑型机载光谱成像仪 CDOM 有色溶解有机物 CRTM 社区辐射传输模型 CNES 法国国家空间研究中心 CRTM 社区辐射传输模型 CRTM 社区辐射传输模型 CZCS 沿海区彩色扫描仪 ENVISAT 环境卫星 ESA 欧洲空间局 FOV 视场 GDAL 地理空间数据抽象库 GIS 地理信息系统 GPS 全球定位系统 GRASS 地理资源分析支持系统 GRETL GNU 回归、计量经济学和时间序列库 HCMR 希腊海洋研究中心 GUI 图形用户界面HyMap 高光谱测绘仪 ILWIS 综合陆地和水域信息系统 iPAQ internet CompAQ 出品的掌上电脑 KOPRA Karlsruhe 优化和精确辐射传输算法 LAD 最小绝对偏差 LAI 叶面积指数 Landsat TM Landsat 专题测绘仪 Landsat ETM+ Landsat 增强专题测绘仪 Plus MERIS 中分辨率成像光谱仪 MIPAS 用于被动大气探测的迈克尔逊干涉仪 MODIS 中分辨率成像光谱辐射计 NASA 美国国家航空航天局
我们介绍了德克萨斯大学 - 城市研究的全球建筑高度(UT -Globus),该数据集可为全球1200多个城市或地区提供建筑高度和城市顶篷参数(UCP)。ut-Globus将开源太空载速度(ICETAT-2和GEDI)和粗分辨率的城市冠层高度数据与机器学习模型结合在一起,以估算建筑物级别的信息。使用来自美国六个城市的LiDAR数据进行验证,显示ut-Globus衍生的建筑高度的均方根误差(RMSE)为9.1米。验证1公里2个网格电池内的平均建筑高度,包括来自汉堡和悉尼的数据,导致RMSE为7.8米。与现有的基于餐桌的本地气候区域方法相比,在城市天气研究和预测(WRF城市)模型中,在城市内空气温度代表性中的UCP显着改善(RMSE为55%)。此外,我们演示了数据集使用WRF城市模拟降温策略并建立能源消耗的数据集,并在芝加哥,伊利诺伊州和德克萨斯州的奥斯汀进行了测试案例。使用太阳能和长波环境辐照度几何形状(SOLWEIG)模型(结合UT-Globus和LiDAR来源的建筑高度)的街道尺度平均辐射温度模拟证实了该数据集在MD Baltimore,MD(白天RMSE = 2.85°C)中建模数据集的有效性。因此,UT-Globus可用于建模具有重大社会经济和生物气象风险的城市危害,从而实现更细长的城市气候模拟,并由于缺乏建筑信息而克服了先前的限制。
4AOP 自动大气吸收图集业务版本 6SV1 太阳光谱中卫星信号的第二次模拟,版本 1 ASCII 美国信息交换标准代码 ANOVA 方差分析 ASTER 先进星载热发射和反射辐射计 BRDF 双向反射分布函数 CASI 紧凑型机载光谱成像仪 CDOM 有色溶解有机物 CRTM 社区辐射传输模型 CNES 法国国家空间研究中心 CRTM 社区辐射传输模型 CRTM 社区辐射传输模型 CZCS 沿海区彩色扫描仪 ENVISAT 环境卫星 ESA 欧洲航天局 FOV 视场 GDAL 地理空间数据抽象库 GIS 地理信息系统 GPS 全球定位系统 GRASS 地理资源分析支持系统 GRETL GNU 回归、计量经济学和时间序列库 HCMR 希腊海洋研究中心 GUI 图形用户界面 HyMap高光谱测绘仪 ILWIS 综合陆地和水域信息系统 iPAQ internet CompAQ 出品的掌上电脑 KOPRA Karlsruhe 优化和精确辐射传输算法 LAD 最小绝对偏差 LAI 叶面积指数 Landsat TM Landsat 专题测绘仪 Landsat ETM+ Landsat 增强专题测绘仪 Plus MERIS 中等分辨率成像光谱仪 MIPAS 用于被动大气探测的迈克尔逊干涉仪 MODIS 中分辨率成像光谱辐射计 NASA 美国国家航空航天局
