摘要 — 紫外 (UV) 激光器被提议作为无接触航天器电位传感中低能电子束的替代品。由于它们对静电环境不敏感,理论上支持将其用作光电子源,从而实现更稳健和可控的系统。在代表性应用场景中验证了该方法的可行性,并讨论了其与航天器电荷控制和材料识别的相关性。提出了一种简化的光发射框架,并通过粒子追踪模拟用真空室实验进行了验证,表明这种框架可用于确定从目标表面发出的光电子的空间分布及其幅度的合理估计。还讨论了将此方法与高能电子束相结合的可能性,以增强传感过程的稳健性和准确性。最终,该分析支持在地球同步轨道和深空的各种航天器充电技术中使用紫外激光器。
2016 年在 LISA Pathfinder (LPF) 上演示的推进器飞行。电喷雾微推进器将高电势施加到空心针发射器末端的导电带电液体上,以加速带电液滴并产生推力
2015 年 7 月 14 日,新视野号首次飞越冥王星 - 卡戎,在其主要任务中取得了全面成功。不到 4 年后,在其首次扩展任务中,新视野号于 2019 年 1 月 1 日飞越了柯伊伯带中一个 36 公里长的接触双星外海王星天体 Arrokoth。在此过程中,新视野号拍摄了许多遥远的柯伊伯带天体,进行了重要的太阳物理科学研究,包括复杂的莱曼-α 辐射扫描,并测量了从未探索过的区域的尘埃和黄道光。本文概述了新视野号航天器及其工程性能,以及将任务延长到远远超出其原始设计寿命的潜在策略。有关质量和功率预算的详细信息,以及应对任务挑战的关键创新描述,提供了导致任务成功的工程成就的见解。有关电力、热能和推进系统的趋势数据证实了该任务在 2050 年前继续探索日球层顶以外的潜力。
太空产业正在蓬勃发展——从最近 Artemis 计划第一阶段的成功,到即将推出的为九次登月做准备的商业月球有效载荷服务 (CLPS) 计划。因此,必须调整用于靠近地球轨道的航天器的观测程序,以适应地球同步轨道 (GEO) 以外的太空区域 (XGEO)。然而,围绕 XGEO 存在着长期挑战,例如三体问题及其后续轨道的复杂性,以及感知比 GEO 远许多倍的物体的困难。这些挑战使得大多数传统的航天器跟踪、检测、成像和观测生成技术无法使用。
Starling的四个6U立方体于2023年7月17日从新西兰Mahia的Rocket Lab Punch Complex 1推出。Starling将测试群体操纵计划和执行,通信网络,相对导航以及航天器之间的自主协调。动画图像学分:NASA。图像信用:火箭实验室
1.2 感兴趣的 NVR 是室温下沉积在取样板表面的 NVR:用户可自行推断取样板表面的 NVR 与其它表面的 NVR 之间的关系。1.3 本标准并不旨在解决与其使用相关的所有安全问题(如有)。本标准的用户有责任在使用前制定适当的安全、卫生和环境实践,并确定监管限制的适用性。1.4 以 SI 单位表示的数值应视为标准值。本标准不包含其它计量单位。1.5 本国际标准是根据世界贸易组织技术贸易壁垒 (TBT) 委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确定的国际公认的标准化原则制定的。
摘要:在这项工作中,我们探索了镓作为一种有效的相变材料在热管理应用中的热性能。将镓制造的散热器的热存储和散热与传统的相变散热器进行了比较。比较结果显示,由于高密度、热导率和熔化潜热,相变过程中的温度可能降低 50 倍(80 K 对 1.5 K)。镓在瞬时加热时会产生浅热梯度,从而产生近乎等温的过程。使用集中总和参数的计算估计能够提供简单的模型来预测结果。基于镓的相变装置兼具体积小、整个装置温降小、制造和设计简单以及高能量存储应用等特点。DOI:10.1061/(ASCE)AS.1943-5525.0001150。本作品根据知识共享署名 4.0 国际许可证条款提供,https://creativecommons.org/licenses/by/4.0/ 。
摘要 机组人员的表现高度依赖于航天器的设计和操作交互,并受各种航天环境参数的影响。当前载人航天任务设计流程面临的挑战是包括对机组人员表现预测的各种影响,无论是正面的还是负面的,这些影响都会影响对安全关键任务的分析准确性和系统的整体运行。本研究的目的是提出一个框架,该框架将设计评估和运行效率因素与三个综合机组人员表现指标相结合,旨在为评估航天器设计方案提供一种更加以人为本的方法。为了开发这样一个框架,首先采用系统方法来识别、分类和组织与机组人员表现相关的术语。从类似行业评估了绩效衡量技术和实施理念,以从更广泛的地面知识库中获得见解。来自此上下文的各种术语、定义和方法被汇总到拟议的航天机组人员表现框架中(如适用)。该框架旨在为设计师提供指导,作为一种预测手段,通过标准化性能反馈数据来评估系统如何有效地容纳和利用机组人员。
航天器热管理对于确保任务成功至关重要,因为它影响了板载系统的性能和寿命。提供了航天器热控制解决方案中最新技术的全面概述,以及用于高效有效热管理的设计方法框架。讨论了各种热控制溶液,包括涂料,绝缘,热管,相位变化材料,导电材料,热装置,积极泵送的流体环和辐射器,以及空间中的热量加载的主要来源。强调了对热环境的认证建模和分析,以确定适当的热控制解决方案和设计途径。未来的热管理创新(例如新材料和技术)有可能进一步提高航天器热控制解决方案的效率和有效性。
航天器窗户技术 新的合作机会 参考编号:80JSC021SWT 潜在商业应用:飞机、汽车、建筑、潜水器、水族馆、 关键词:玻璃窗、塑料窗、丙烯酸窗、聚碳酸酯窗、结构窗、光学、窗玻璃、飞机窗户、航天器窗户、挡风玻璃 目的:NASA JSC 寻求与合作伙伴合作,推进与航天器窗户相关的技术,目标是使窗户结构更合理、更轻、更便宜,同时仍保持所需的光学特性。在航天飞机和国际空间站等使人类能够突破探索边界的航天器上,窗户通常由多层玻璃制成。但是,玻璃并不是用于航天器窗户的理想材料。它是一种较差的结构材料。当对玻璃施加负载时,玻璃会随着时间的推移而失去强度,如果微流星体损坏玻璃,强度会立即大幅降低。美国宇航局最新的载人太空飞行器猎户座的内部玻璃由丙烯酸塑料制成。这种材料变化提高了窗户的结构完整性。在追求这些类型的窗户技术进步的过程中,美国宇航局和潜在合作伙伴将为航天器开发新的和改进的窗户功能,这也将为多个行业的地面应用提供更多选择。技术:技术目标包括但不限于:改进涂层以阻挡紫外线,防止因吸收紫外线而导致的降解,降低可燃性,防尘,适应电致变色变暗能力,减轻重量,提高抗冲击性,并确定自修复窗户和窗户作为兼职显示屏的可行性。计划进行研究以确定仅由轻质塑料制成的多窗格窗户的可行性,其中包括长时间的负载测试,以确保不会发生明显的“蠕变”。研发状态:美国宇航局已经对航天器窗户玻璃进行了广泛的开发和测试。这些历史数据(包括飞行数据)涵盖了窗格的光学性能、强度和材料特性,为实现上述技术目标提供了极好的基础。 NASA 配备了众多设施,将用于验证这些技术。光学试验台将验证新功能不会阻挡或扭曲