基于小分子受体(SMA)的全PSC。 [1–8] 近年来,随着新型高效PD和聚合小分子受体(PSMA)的快速发展,全PSC的能量转换效率(PCE)已升至16%。 [9–14] 然而,目前报道的PCE超过13%的全PSC仅有少数,仍然远低于最先进的基于SMA的全PSC。更重要的是,它们的机械性能还远远达不到可穿戴设备的要求(即要求裂纹起始应变(COS)至少为20–30%)。阻碍基于PSMA的全PSC性能的主要障碍是强烈相分离的共混物形貌,这是由于高分子量PD和PSMA的分离导致的,从而导致电荷产生和传输无法优化。 [15,16] 这些非最优形态通常包括共混膜中的许多缺陷位点(即尖锐的畴-畴界面和大的聚合物聚集体),限制了低 COS 下的机械强度和拉伸性。[17–19] 此外,聚合物共混物的相分离受 PD 和 PA 的聚集和结晶行为的影响。特别是,含有高度结晶、刚性 SMA 单元的 PSMA 通常具有非常强的结晶和聚集特性,导致强烈的相分离
产品类型和应用 Bradford SpacerX TM 是一种用于檩条屋顶的绝缘垫片。它抬高屋顶覆层,使屋顶隔热层保持其位置和标称厚度,以提供其完整的声明 R 值。SpacerX 适用于隐藏式(夹式)屋顶覆层,不适用于螺丝固定屋顶板。它可用于非气旋地区。符合 NCC 测试和分析已进行,以确定 SpacerX 垫片的容量。项目结构工程师有责任确定 SpacerX 是否适用于特定的屋顶系统。在澳大利亚使用时,如果根据 CSR 文件的要求和限制正确指定和安装,则本产品符合 NCC 的规定,如下所示 - NCC 2022
税收策略范围本策略根据《2016 年财政法案》附表 19 第 19 段适用于 Edgetech (UK) Limited。该策略根据附表第 19(4) 段发布。公司认为本出版物符合其在截至 2023 年 10 月 31 日的财政年度根据《2016 年财政法案》附表 19 第 16(2) 段规定的义务。本策略自发布之日起适用,直至被取代。对“英国税收”的引用是指附表第 15(1) 段列出的税费,包括所得税、公司税、PAYE、NIC、增值税、保险费税和印花税土地税。对“税收”、“税收”或“税收”的引用是指英国税收以及公司负有法律责任的所有相应的全球税收和类似关税。目标 Edgetech (UK) Limited 致力于全面遵守所有法定义务并向相关税务机关全面披露。公司的税务管理方式考虑到了集团更广泛的企业声誉和治理。与英国税收相关的治理 • Edgetech (UK) Limited 的税务策略和合规性的最终责任在于 Edgetech (UK) Limited 董事会; • 董事会将执行管理委托给执行官; • 财务总监是负责税务事宜的执行官,并向董事会报告全年的税务事宜和风险; • 董事会要求监控 Edgetech (UK) Limited 的财务报告系统、内部控制和风险管理框架的完整性,其中明确包括与税务相关的要素; • 财务团队配备了适当资格的人员; • 董事会确保 Edgetech (UK) Limited 的税务策略是所有投资和重大业务决策考虑的因素之一。风险管理• Edgetech (UK) Limited 运营一套税务风险评估和控制系统,作为适用于财务报告系统的整体内部控制框架的一部分;• Edgetech (UK) Limited 致力于在合理可行的范围内降低其运营产生的税务风险水平,确保对所有可能对其履行税务义务产生重大影响的流程采取合理的谨慎态度;• 在适当情况下向外部顾问寻求建议。
小分子受体(SMA)。[1-8]全PSC的功率转换效率(PCE)最近增加了16%,这是由于新的有效P D S的快速发展和聚合小分子受体(PSMA)的迅速发展。[9-14]但是,仅报道只有少数PCES超过13%的全PSC,这仍然远低于基于SMA的最先进的PCS。更重要的是,它们的机械性能仍然远离可穿戴设备的要求(即,裂纹发作应变(COS)至少需要20–30%)。妨碍基于PSMAS的全PSC的性能的主要障碍是相位分离的混合形态,这是由于高分子重量P D S和PSMA的混合而驱动的,导致了不合时宜的电荷构和运输。[15,16]这些不最佳的形态通常包括混合膜中的许多缺陷位点(即尖锐的域 - 域 - 域界面和大型聚合物聚集体),从而限制了与PORIMER相互影响的相位和晶体的相位,从而限制了与低COS的机械鲁棒性和可伸展性。[17-19]。特别是,含有高度cry的PSMAS-刚性SMA单元通常具有非常强的结晶和聚集特性,从而导致强烈的相分离
1 中国科学院微电子研究所微电子器件与集成技术重点实验室,北京 100029;liyongliang@ime.ac.cn(YL);zhouna@ime.ac.cn(NZ);xiongwenjuan@ime.ac.cn(WX);zhangqingzhu@ime.ac.cn(QZ);duanyan@ime.ac.cn(AD);gaojianfeng@ime.ac.cn(JG);kongzhenzhen@ime.ac.cn(ZK);linhongxiao@ime.ac.cn(HL);xiangjinjuan@ime.ac.cn(JX);lichen2017@ime.ac.cn(CL);yinxiaogen@ime.ac.cn(XY);wangxiaolei@ime.ac.cn(XW);yanghong@ime.ac.cn(HY);maxueli@ime.ac.cn(XM); hanjianghao@ime.ac.cn (JH); tyang@ime.ac.cn (TY); lijunfeng@ime.ac.cn (JL); yinhuaxiang@ime.ac.cn (HY); zhuhuilong@ime.ac.cn (HZ); luojun@ime.ac.cn (JL); rad@ime.ac.cn (HHR) 2 中国科学院大学微电子研究所,北京 100049 3 北京有色金属研究总院智能传感新材料国家重点实验室,北京 100088 4 北方工业大学电子信息工程学院,北京 100144;zhangj@ncut.edu.cn (JZ); tairanhu1@gmail.com (TH); chrisaigakki@gmail.com (ZC) 5 中瑞典大学电子设计系,Holmgatan 10, 85170 Sundsvall,瑞典 * 通讯地址:lijunjie@ime.ac.cn (JL);wangguilei@ime.ac.cn (GW);wangwenwu@ime.ac.cn (WW);电话:+ 86-010-8299-5508 (WW)
摘要:二维 (2D) 卤化物钙钛矿表现出独特的发射特性,使其成为下一代发光器件的潜在候选者。在这里,我们结合非绝热分子动力学和时域密度泛函理论来研究载流子复合过程的基本机制。考虑具有不同有机间隔分子、正丁基铵 (BA) 和苯乙铵 (PEA) 阳离子的单层溴化物钙钛矿,我们发现这些材料中温度引起的结构波动与非辐射载流子复合率之间存在很强的相关性。与 (PEA) 2 PbBr 4 相比,(BA) 2 PbBr 4 的几何形状更灵活,导致电子 - 空穴复合更快,载流子寿命更短,从而降低了较软 2D 钙钛矿的光致发光量子产率。相对刚性 (PEA) 2 PbBr 4 中结构波动的减少不仅表明载流子寿命更长,而且表明发射线宽度更窄,这意味着发射光的纯度更高。我们对 2D 钙钛矿中激发态特性的从头算建模传达了材料设计策略,以微调固态照明应用的钙钛矿发射。
这种材料在有机发光领域具有极高的应用前景。例如,由于量子或电介质限制效应,光学带隙随着有机间隔物之间八面体层数的减少而变宽。[3,4] 最近,发现表面态是由层状钙钛矿的局部结构扭曲引起的。[5] 由于高发射量子效率和光学特性的大可调性,人们致力于利用准二维/三维钙钛矿[6–8]和低维钙钛矿制造发光二极管 (LED)。[9–14] 典型的准二维/三维和低维钙钛矿基 LED 输出高亮度 10 3 – 10 5 cd m − 2 以及 10–20% 的外部量子效率。 [9,12,15,16] 支撑如此高性能的发射机制有多种物理原因。例如,有人提出,低维钙钛矿中激子的高结合能起着重要作用,促进了辐射复合,从而产生了高发射量子产率。[17] 其他研究将高效发射归因于薄膜上不同厚度(或 n 数)的量子阱形成的能量景观,这些量子阱将电荷载流子级联到能量最低的发射位点进行复合。[14]