全球消费者数据流量的复合年增长率(CAGR)每年继续增长两位数。但是,在城市地区外部署纤维或细胞塔通常是不经济的。地静止轨道(GEO)卫星数十年来提供了全球覆盖范围;但是,从36,000公里的高度来看,它们的容量密度非常有限(例如,Mbps/km2)。通过GEO卫星的往返潜伏期也超过500毫秒,为交互式和其他延迟敏感的应用创造了糟糕的体验。对商业数据流量的未满足需求正在推动卫星操作员将新的卫星星座部署到非震荡轨道(NGSO)中。作为卫星的高度减少到中等地球轨道(MEO)的数量级(MEO),另一个数量级和低地球轨道(LEO),或者也许还有另一个数量级,而高空平台站(HAPS)飞机的范围更大的范围是供应范围的范围。 发表。然而,现在全球覆盖范围和非对位数运动所需的卫星数量显着增加,引起了许多新的操作挑战。
摘要:检测从尖端 - 样品连接散射的电磁辐射已使衍射限制并开始了Polariton纳米影像的繁荣场。但是,大多数技术仅解决散射辐射的振幅和相对相。在这里,我们利用了对超短散射脉冲的场分辨检测来绘制空间和时间上表面极化子的动力学。等离子体极化子是研究的理想模型系统,证明了如何通过直接的数学方程式和归一化方法在时间域中可视化和建模传播模式。这种新颖的方法可以直接评估极化子的组和相速度以及阻尼。此外,它与泵 - 探头方案的结合特别强大,可在光激发时追踪极化子繁殖的亚周期变化。我们的方法很容易适用于其他量子材料,提供了一种多功能工具来研究极性子的超临时空间时空动力学。关键字:Terahertz表面等离子体极化子,近场光学显微镜,S-SNOM,野外分辨,石墨烯,时间分辨,超时地图,相位速度,组速度,群体速度,全光照控制
摘要:在我们问什么是量子引力理论之前,我们有一个合理的追求,即在弯曲时空中制定一个稳健的量子场论 (QFTCS)。几十年来,一些概念问题,尤其是幺正性损失(纯态演变为混合态),引起了人们的关注。在本文中,我们承认时间是量子理论中的一个参数,这与它在广义相对论 (GR) 背景下的地位不同,我们从“量子优先方法”入手,提出了一种基于离散时空变换的 QFTCS 新公式,这提供了一种实现幺正性的方法。我们基于离散时空变换和几何超选择规则,用直接和 Fock 空间结构重写了 Minkowski 时空中的 QFTCS。将此框架应用于德西特 (dS) 时空中的 QFTCS,我们阐明了这种量化方法如何符合幺正性和观察者互补原理。然后,我们评论了对德西特时空中状态散射的理解。此外,我们简要讨论了 QFTCS 方法对未来量子引力研究的影响。
我们提出一个离散的信息基底作为基础层,时空结构、标准模型规范对称性、黑洞熵、全息对偶性和综合复杂性度量由此产生。我们将基底构建为具有明确定义的局部更新规则的四维晶格系统。通过使用重正化群 (RG) 分析系统,我们证明了洛伦兹不变性可以在低能量下出现。通过将基态表示为张量网络,我们将出现的大尺度几何连接到全息对偶,从而重现纠缠熵的 Ryu-Takayanagi 公式。离散视界上的组合微态计数得出贝肯斯坦-霍金黑洞熵定律。此外,我们定义了一个与综合信息理论的 Φ 一致的综合复杂性度量,将复杂性定义为底层因果结构的突发属性。特殊极限重现了已知的理论,例如圈量子引力 (LQG) 和因果集理论,强调这些框架是更基本基础的涌现现象。最后,我们讨论了哥德尔不可判定性和认识论极限,它们是复杂的涌现行为的自然结果。这项工作将涌现定位为将基础物理学的多个方面编织在一起的统一概念。
STS-UY.2274 空间与时空 纽约大学坦顿分校技术、文化与社会系 教授:Jonathan Bain 休息时间:Zoom,周二 12:30-1:30pm 远程 6 MetroTech Rm207 jon.bain@nyu.edu 办公室:2 MetroTech,9 楼,Rm929 周一/周三 12:00-1:50pm https://research.engineering.nyu.edu/~jbain 2025 年春季 I. 教学形式:除非情况另有要求,否则将在课堂上进行教学。请注意 nyu.edu/life/safety-health- wellness/coronavirus-information/covid-related-guidance/protective-equipment.html 上的纽约大学口罩政策。口罩不是必需的,但欢迎佩戴。提醒一下,如果您生病了或者出现了生病的症状(咳嗽、打喷嚏、流鼻涕等),您应该待在家里,直到感觉好些并且症状消失。错过这门课的一两节课是可以的:只要和我讨论错过的内容,就可以轻松弥补。另一方面,如果您发现自己不得不缺课一周以上,请参阅下面的第 VII.3.ii 节。我会在整个学期内定期提醒全班同学这些政策。二、描述:空间的本质是什么?它是独立存在的物质还是由物理对象之间的关系组成?运动可以用物体的关系属性来描述吗,还是我们必须始终相对于绝对静止的基质来定义运动?左手手套的存在是否意味着绝对空间的存在?在本课程中,我们将思考这些问题以及其他有关空间和时间本质的问题,这些问题出现在从柏拉图和亚里士多德到笛卡尔和牛顿的哲学家的著作中,最终出现在爱因斯坦和 20 世纪的空间和时间概念中。这是一门 4 学分的课程,为期 15 周。因此,您应该每周为这门课程投入 6.6 小时的补充时间。补充时间是课堂教学以外的时间,包括阅读作业、写作、考试准备、家庭作业和学习时间。有关 NYU 相关政策的更多信息,请参阅:www.nyu.edu/academics/accreditation-authorization-assessment/resources-faqs/required-weekly-minutes.html III. 目标 HuSS(人文和社会科学)通识教育目标 批判性、创造性和独立思考;展示信息素养;展示探究和分析技能;展示有效的口头交流技能;展示有效的写作技巧;将 HuSS 的观点运用到技术讨论中;展示道德推理。STS(科学、技术和社会)集群目标 • 展示对以下内容的基本理解:
经典物理学的常规相空间对空间和时间的处理方式有所不同,这种差异将导致现场理论和量子力学(QM)。在本文中,通过两个主要扩展可以增强相空间。首先,我们将Legendre转换的时间选择提升为动态变量。第二,我们将物质字段的泊松支架扩展到时空对称形式。随后的“时空空间”用于获得相对论场理论的汉密尔顿方程的明确协变版本。然后提出了形式主义的类似规范的量化,其中田地满足时空的换向关系,而叶面是量子。在这种方法中,经典的行动还促进了运营商,并通过其在物质 - 遗传分区中的不可分割性保留了明确的协方差。在新的非CASAL框架之间建立对应关系的问题(在不同时间是独立的字段)和传统的QM通过将空间类似相关器的概括性化为时空来解决。在这种概括中,哈密顿量被动作和常规颗粒取代,而被壳颗粒取代。量化叶面时,与页面和摇动机制相比,通过对叶状本征的条件来恢复上一个地图。我们还提供了对应关系的解释,其中给定理论的因果结构是从系统与环境之间的量子相关性出现的。这个想法适用于通用量子系统,并允许人们将密度矩阵推广到包含时空中相关器信息的操作员。
我们提出了一种用于准备任意量子态的新型确定性方法。当我们的协议被编译成 CNOT 和任意单量子比特门时,它会准备一个深度为 O (log( N )) 的 N 维状态,时空分配(一种度量标准,它考虑到某些辅助量子比特通常不需要在整个电路中处于活动状态)为 O ( N ) ,这两者都是最优的。当编译成 { H , S , T , CNOT } 门集时,我们表明它比以前的方法需要更少的量子资源。具体来说,它可以准备一个任意状态,误差不超过 ϵ,最佳深度为 O (log( N ) + log(1 /ϵ )),时空分配为 O ( N log(log( N ) /ϵ )),分别优于 O (log( N ) log(log( N ) /ϵ )) 和 O ( N log( N/ϵ ))。我们说明了我们的协议如何通过减少时空分配来快速准备许多不相交状态,而只需要常数因子辅助开销——O ( N ) 个辅助量子位被有效地重用,以准备深度为 O (w + log( N )) 而不是 O (w log( N )) 的 w N 维状态的乘积状态,从而有效地实现每个状态的恒定深度。我们重点介绍了这种能力有用的几个应用,包括量子机器学习、汉密尔顿模拟和求解线性方程组。我们提供我们的协议的量子电路描述、详细的伪代码和使用 Braket 的门级实现示例。
5 正如埃尔温·薛定谔在其 1944 年出版的《生命是什么?》(第 28-29 页)一书中所写:“我们在此显然面临一些事件,它们的规律性展开是由一种与物理学的概率机制完全不同的机制所引导的。(…)我们必须准备好寻找一种新型的物理定律。(…)它只不过是量子理论原理的重演。”《简单的量子力学》解释了量子理论原理,该原理在完整的量子世界所铸造的语境“夹克”中得到展现(quanta.pdf 第 6 页)。这是赋予量子世界现实地位的唯一方法,“刚好处于可能性和现实之间的中间”(维尔纳·海森堡)。这同样适用于引力场的现实:“人们不可能想象,引力场是一种‘现实’,也是一种‘虚构’。” (阿尔伯特·爱因斯坦,《自然科学》第 48 卷(1918 年)第 697-702 页,第 700 页。)在这两种情况下,我们都面临着一种准局部现实形式(canvas.pdf 第 8 页):没有“局部引力能量-动量”(MTW 第 467 页),也没有来自完整量子世界的局部量子“外壳”。共同点是准局部 4+ 0 D 时空,由时间之箭驱动:全局思考,局部行动(waves.pdf)。很简单,不是吗?
2差异几何形状的评论5 2.1歧管,光滑的地图和切线空间。。。。。。。。。。。。5 2.2张量代数(一个点的张量)。。。。。。。。。。。。。。。。。9 2.3张量。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 2.4 Lorentzian度量和Lorentzian歧管。。。。。。。。。12 2.4.1简短的Intermezzo:Lorentz内部产品。。。。。。。。12 2.4.2 Minkowski空间。。。。。。。。。。。。。。。。。。。。。。。15 2.4.3索引升高和降低。。。。。。。。。。。。。。。。。16 2.4.4更多术语。。。。。。。。。。。。。。。。。。。16 2.4.5曲线的长度。。。。。。。。。。。。。。。。。。。。。16 2.4.6时间方向。。。。。。。。。。。。。。。。。。。。。。。17 2.4.7洛伦兹指标的存在。。。。。。。。。。。。。。。18 2.5矢量场和流。。。。。。。。。。。。。。。。。。。。。。。。19 2.6连接。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 2.7平行运输和测量学。。。。。。。。。。。。。。。。。。24 24 2.8扭转张量。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25 2.9 Riemann曲率张量。。。。。。。。。。。。。。。。。。。。。。25 2.10 Levi-Civita连接。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>25 2.11绑带调整器的对称性。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>26 2.12 ricci张量。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>27 2.13爱因斯坦方程。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>27 2.14异分析。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。28 2.15指数地图和正常社区。。。。。。。。31 2.16正常坐标。。。。。。。。。。。。。。。。。。。。。。。。。。32 2.17本地洛伦兹几何形状。。。。。。。。。。。。。。。。。。。。。。。33
霍金描述黑洞信息悖论已经 50 年了。研究发现,黑洞辐射和随后的黑洞蒸发相结合会使被困住的信息消失,这违反了量子信息守恒定律。从那时起,人们进行了许多尝试来解决这一悖论。本文简要回顾了所有这些尝试都存在重大缺陷,这意味着该悖论仍未得到解决。一种相对较新的宇宙学理论提供了一种解决方案,尽管它并非为此目的而开发。该理论名为概率时空理论 (PST),与所有现行宇宙学理论相比,它首先改变了一个基本假设。时空不再被视为空洞或其他实体的容器,而是被视为宇宙中最基本的实体,由能量碎片组成,并且(根据守恒定律)无法毁灭。描述了 PST 在解决信息悖论中的潜在贡献,并发现时空概念化的单一变化会导致悖论的消失而不是信息的消失。