环境与社会框架 (ESF) 于 2018 年 10 月 1 日生效,适用于该日期之后启动的所有投资政策融资 (IPF) 项目。它在劳工、非歧视、气候变化缓解和适应、生物多样性、社区健康和安全以及利益相关者参与等领域取得了重要进展,包括扩大公众参与和申诉机制的作用。ESF 通过十项环境和社会标准 (ESS) 加强了对可持续发展的承诺,这些标准旨在支持借款国的环境和社会 (E&S) 风险管理。ESF 采用基于风险的方法,对复杂项目施加更多的监督和资源,并通过适应性风险管理和利益相关者参与来提高对项目环境变化的响应能力。ESF 使借款国能够更好地管理项目风险并改善环境和社会绩效,符合良好的国际惯例。它为借款国提供了创新的空间,并有助于就与其本国发展议程相关的特定 E&S 风险开展对话。项目已制定了环境和社会承诺计划 (ESCP) 和利益相关者参与计划 (SEP),其中描述了披露和咨询项目活动的措施,并描述了申诉处理程序。所有受项目影响的各方都可以免费且不受惩罚地访问 GRM,包括匿名提交的疑虑和申诉,方式符合《环境和社会标准 10》。项目将制定环境和社会管理
4 md.devendran@gmail.com摘要:鸟类鉴定在生物多样性保护和生态学研究中起着至关重要的作用,为栖息地健康和物种分布提供了见解。识别鸟类物种的传统方法是时间密集型,容易出现人为错误,因此需要自动解决方案。这个项目是使用深度学习的鸟类识别,提出了一个先进的系统,以利用深度学习的力量准确地从图像中识别鸟类。该系统利用卷积神经网络(CNN),以其在图像分类任务方面的熟练程度而闻名。一个包含多种鸟类图像的数据集进行了预处理并增强,以增强模型的鲁棒性和泛化。模型架构旨在提取复杂的特征,即使在诸如不同的照明条件,遮挡或类似物种的外观等挑战性的情况下,也可以准确识别。使用准确性,精度,召回和F1得分等指标评估模型的性能,以确保全面验证。结果表明,对传统机器学习方法的准确性改善了,这表明了物种识别中深度学习的潜力。该项目对野生动植物监测,生态研究和教育工具的应用有望,从而促进了意识和保护工作。未来的工作可能包括将系统集成到移动应用中,或将其部署在现场条件下的实时鸟类识别。
认证 ATEX ATEX:II 2 GD Ex db IIC T5 Gb 或 Ex db eb IIC T5 Gb 和 Ex tb IIIC T95°C Db -55°C
神经系统(大脑和脊髓)、颅骨和脑膜的大体解剖学 1 - 脑室系统、脑脊液和神经系统的血液供应 2 - 神经系统组织学(中枢和周围神经系统) 3 - 中枢神经系统的功能解剖学 4 - 脑循环和脑脊液形成的生理学 5 - 神经系统的发育 头部和颈部的发育 6 - 细菌性脑膜炎和脑脓肿 7 - 病毒性脑膜炎和病毒性脑炎破伤风和肉毒杆菌中毒 8 - 脑神经和脊神经的主要功能 9 - 大脑神经递质的特殊代谢:类型和生命周期 10 - 脑干解剖学(延髓,Pons,MB) 11 - 自主神经系统:- 交感神经和副交感神经。 - 胆碱能和肾上腺素能。 - 肾上腺素和乙酰胆碱的生命周期 12 -
在过去的15年中,克里斯蒂安一直是全国教育领袖的值得信赖的顾问。最近,克里斯蒂安(Christian)曾担任美国教育部长的高级顾问,米格尔·卡多纳(Miguel Cardona)博士就K-12,战略伙伴关系和特别计划的所有事项提供了建议。由拜登总统任命,罗得岛还担任小学和中等教育办公室的参谋长,领导了该部门为增加夏季学习和丰富计划的访问和可用性的努力,并建立了以从业人员为中心的地区,并建立了一个以从业人员为中心的地区,以及国家对安全重新开放美国学校的回应。此外,他的办公室负责K-12的所有大量酌处赠款,即21世纪的学习中心,全方位服务的社区学校和承诺社区。最后,他的团队通过历史悠久的救援计划,领导了超过1,220亿美元的分配,这是我们国家历史上最重要的一项公共教育投资。
4 md.devendran@gmail.com摘要:鸟类鉴定在生物多样性保护和生态学研究中起着至关重要的作用,为栖息地健康和物种分布提供了见解。识别鸟类物种的传统方法是时间密集型,容易出现人为错误,因此需要自动解决方案。这个项目是使用深度学习的鸟类识别,提出了一个先进的系统,以利用深度学习的力量准确地从图像中识别鸟类。该系统利用卷积神经网络(CNN),以其在图像分类任务方面的熟练程度而闻名。一个包含多种鸟类图像的数据集进行了预处理并增强,以增强模型的鲁棒性和泛化。模型架构旨在提取复杂的特征,即使在诸如不同的照明条件,遮挡或类似物种的外观等挑战性的情况下,也可以准确识别。使用准确性,精度,召回和F1得分等指标评估模型的性能,以确保全面验证。结果表明,对传统机器学习方法的准确性改善了,这表明了物种识别中深度学习的潜力。该项目对野生动植物监测,生态研究和教育工具的应用有望,从而促进了意识和保护工作。未来的工作可能包括将系统集成到移动应用中,或将其部署在现场条件下的实时鸟类识别。
摘要 在人工智能的发展趋势下,生物识别已成为一种广泛应用的热门技术,在金融、非营利组织、海关等各种场合均有应用,但传统的身份识别工具存在易被泄露、窃取或遭受黑客攻击的风险。脑电图(EEG)是生物识别研究的一种方法,它通过采集头皮特定位置的电磁波来反映个体的脑部活动,大量研究证明脑电图中的α波段可以区分个体差异,其重要性在临床神经生理中也得到了证实。在脑电生物识别中,大多数研究使用复杂的电极通道来覆盖整个头部来收集脑电波记录,但这样的设备无法满足生物识别应用对可采集性的要求。
●Cruz-Garza,J。G.,Darfler,M.,Rounds,J.D.,Gao,E。,&Kalantari,S。(2022)。基于脑电图对房间大小和窗户放置对认知性能的影响的研究。建筑工程杂志,53,104540。https://doi.org/https://doi.org/10.1016/j.jobe.2022.104540●Segawa,J.A.(2019)。使用低成本脑电图(EEG)设备的实践本科体验。本科神经科学教育杂志。17(2),A119 – A124。https://www.ncbi.nlm.nih.gov/pmc/articles/pmc6650260/●Tian,K。(2018)。 缪斯头带:锁定人员的潜在沟通工具。 机械工程研究,8,16。 E. A.和V.-C。 M. D.和De F. S.和L. F.和G.-G. A. R.(2009)。 评估Neurosky在评估练习中检测注意力水平的可用性。 在J. 中 A. Jacko(ed。 ),人类计算机https://www.ncbi.nlm.nih.gov/pmc/articles/pmc6650260/●Tian,K。(2018)。缪斯头带:锁定人员的潜在沟通工具。机械工程研究,8,16。 E. A.和V.-C。 M. D.和De F. S.和L. F.和G.-G. A. R.(2009)。评估Neurosky在评估练习中检测注意力水平的可用性。在J.A. Jacko(ed。),人类计算机
