3D对应关系,即一对3D点,是计算机视觉中的一个有趣概念。配备兼容性边缘时,一组3D相互作用形成对应图。此图是几个最新的3D点云注册方法中的关键集合,例如,基于最大集团(MAC)的一个。但是,其特性尚未得到很好的理解。因此,我们提出了第一项研究,该研究将图形信号处理引入了对应图图的域。我们在对应图上利用了广义度信号,并追求保留此信号的高频组件的采样策略。为了解决确定性抽样中耗时的奇异价值分解,我们采取了随机近似采样策略。因此,我们方法的核心是对应图的随机光谱采样。作为应用程序,我们构建了一种称为FastMAC的完整的3D注册算法,该算法达到了实时速度,而导致性能几乎没有下降。通过广泛的实验,我们验证了FastMac是否适用于室内和室外基准。例如,FastMac可以在保持高recistra-
截至 2020 年 8 月 21 日的牙买加频谱管理局 (SMA) 批准的设备认证清单。SMA 保留在此列表中添加或删除任何设备的权利。
o 能够设计和实施实验或理论程序来解决学术和工业研究中的问题或改进现有结果 o 能够使用分析和数值数学计算工具 o 学生能够将物理理论应用于分子系统/晶体/生物分子/材料,了解使用计算机模拟分子系统动态的现代方法 软技能 ● 做出明智的判断和选择 o 能够以越来越高的自主性水平工作,包括承担项目规划和管理设施的责任 o 鼓励学生为提出的问题选择个人解决方案,并提出有趣的研究案例,这些案例可以作为考试面试的重要部分。 ● 交流知识和理解 o 能够使用意大利语和英语在物理学的高级领域进行交流 o 懂得如何揭示案例研究的特殊性并提出解决技术,鼓励在课堂上进行讨论 ● 继续学习的能力 o 掌握持续学习和知识更新的基本知识工具 o 知道如何从正式文本中提取真实案例研究的操作信息,使用计算机代码、高级数学技术、人工智能 教学大纲 内容知识 分子建模:经典分子动力学。分子中电子的量子处理。
量子逻辑光谱 (QLS) 可用于缺乏合适电子能级结构来直接执行这些任务的原子和分子离子种类的内部状态制备和读出[1 – 4]。原则上,通过使用“逻辑离子”(LI) 及其与共捕获的“光谱离子”(SI) 的运动耦合,QLS 可以控制任何离子种类。如参考文献 [1] 中所述,传统 QLS 协议有两个主要局限性。首先,它要求将离子冷却到接近运动基态。其次,它的读出效率与 SI 的数量关系不大,这可能会阻碍将量子逻辑原子钟扩展到多个离子所带来的更高的稳定性[5]。已经开发出使用重复量子非破坏 (QND) 测量来减轻这些影响的方法[6 – 8]。然而,由于电子结构不合适,应用它们可能不可行,重复测量会降低光谱探针的占空比。在这里,我们演示了文献 [9] 中基于几何相位门提出的 QLS 方法
摘要:我们在液态氦气温度(T = 2 K)上进行激光光谱,以研究用氢化动力学滴注制造的纳米镜高度的蒽晶体中的掺杂的单二苯甲烷(DBT)分子。使用高分辨率的荧光激发光谱法,我们表明,印刷纳米晶体中单分子的零子线几乎与对散装中同一来宾 - 宿主系统观察到的傅立叶限制过渡一样狭窄。此外,光谱不稳定性可与或小于一个线宽度相当。通过记录DBT分子的超分辨率图像并改变激发梁的极化,我们确定印刷晶体的尺寸和晶体轴的方向。对于一系列应用,有机纳米和微晶的电水动力印刷是感兴趣的,其中希望对具有狭窄光学转变的量子发射器进行对照定位。关键字:纳米折线,纳米晶,量子发射极,单分子,单光子源,光谱M
高光谱图像 (HSI) 分类旨在为每个像素分配一个唯一标签,以识别不同土地覆盖的类别。现有的 HSI 深度学习模型通常采用传统学习范式。作为新兴机器,量子计算机在嘈杂的中尺度量子 (NISQ) 时代受到限制。量子理论为设计深度学习模型提供了一种新的范式。受量子电路 (QC) 模型的启发,我们提出了一种受量子启发的光谱空间网络 (QSSN) 用于 HSI 特征提取。所提出的 QSSN 由相位预测模块 (PPM) 和受量子理论启发的类测量融合模块 (MFM) 组成,以动态融合光谱和空间信息。具体而言,QSSN 使用量子表示来表示 HSI 长方体,并使用 MFM 提取联合光谱空间特征。量子表示中使用了 HSI 长方体及其由 PPM 预测的相位。使用 QSSN 作为构建块,我们进一步提出了一种端到端的量子启发式光谱空间金字塔网络 (QSSPN),用于 HSI 特征提取和分类。在这个金字塔框架中,QSSPN 通过级联 QSSN 块逐步学习特征表示,并使用 softmax 分类器进行分类。这是首次尝试将量子理论引入 HSI 处理模型设计。在三个 HSI 数据集上进行了大量实验,以验证所提出的 QSSPN 框架相对于最新方法的优越性。
1。背景1 1.1。肯尼亚的沟通局法律和监管框架1 1.2。关键职责2 1.3。频谱管理职责2 1.4。电信设备类型批准2 1.5。国际方法对频谱管理的重要性3 1.6。将当局的任务应用于电视白色空间4 2。频谱共享TVWS应用程序的机会5 2.1。电视白空间的定义5 2.2。白空间设备操作的授权6 2.3。与电视白色空间相关的风险7 2.4。TVWS 8 2.5的可能许可模型。采用了TVWS的许可模型8 3。使用电视白色空间10 3.1的框架。简介和概述10 3.2。TVWS框架的关键规定11 3.3。主要参考标准11 3.4。地理位置数据库的资格12 3.5。主人和客户端WSD 13 3.6。设备参数13 3.7。操作参数13 3.8。通道使用参数13 3.9。WSD和GeoLocation数据库之间的参数交换14 3.10。干扰管理15 3.11。调整最大发射功率15 3.12。停止提供地理位置数据库服务的要求15 3.13。符合参数的传输15 4。电视白空间试验18 4.1。引言18 4.2。审判目标19 4.3。试验时间表19 4.4。地理位置数据库验证20 4.5。白空间审判授权21 4.6。试验期间的操作员,数据库和设备合作伙伴21 4.7。审判风险23 4.8。地理位置数据库服务模型23 4.9。将数据从权限转移到地理位置数据库24 4.10。设备的地理位置24 4.11。在WSD和GeoLocation数据库之间交换参数24 4.12。干扰管理24 4.13。TVWS试验结果的目标和摘要24
IEEE 是一家非盈利组织,是世界上最大的技术专业组织,致力于推动技术进步,造福人类。© 版权所有 2023 IEEE - 保留所有权利。使用本网站即表示您同意条款和条件。