IEEE 是一家非盈利组织,是世界上最大的技术专业组织,致力于推动技术进步,造福人类。© 版权所有 2023 IEEE - 保留所有权利。使用本网站即表示您同意条款和条件。
量子逻辑光谱 (QLS) 可用于缺乏合适电子能级结构来直接执行这些任务的原子和分子离子种类的内部状态制备和读出[1 – 4]。原则上,通过使用“逻辑离子”(LI) 及其与共捕获的“光谱离子”(SI) 的运动耦合,QLS 可以控制任何离子种类。如参考文献 [1] 中所述,传统 QLS 协议有两个主要局限性。首先,它要求将离子冷却到接近运动基态。其次,它的读出效率与 SI 的数量关系不大,这可能会阻碍将量子逻辑原子钟扩展到多个离子所带来的更高的稳定性[5]。已经开发出使用重复量子非破坏 (QND) 测量来减轻这些影响的方法[6 – 8]。然而,由于电子结构不合适,应用它们可能不可行,重复测量会降低光谱探针的占空比。在这里,我们演示了文献 [9] 中基于几何相位门提出的 QLS 方法
高光谱图像 (HSI) 分类旨在为每个像素分配一个唯一标签,以识别不同土地覆盖的类别。现有的 HSI 深度学习模型通常采用传统学习范式。作为新兴机器,量子计算机在嘈杂的中尺度量子 (NISQ) 时代受到限制。量子理论为设计深度学习模型提供了一种新的范式。受量子电路 (QC) 模型的启发,我们提出了一种受量子启发的光谱空间网络 (QSSN) 用于 HSI 特征提取。所提出的 QSSN 由相位预测模块 (PPM) 和受量子理论启发的类测量融合模块 (MFM) 组成,以动态融合光谱和空间信息。具体而言,QSSN 使用量子表示来表示 HSI 长方体,并使用 MFM 提取联合光谱空间特征。量子表示中使用了 HSI 长方体及其由 PPM 预测的相位。使用 QSSN 作为构建块,我们进一步提出了一种端到端的量子启发式光谱空间金字塔网络 (QSSPN),用于 HSI 特征提取和分类。在这个金字塔框架中,QSSPN 通过级联 QSSN 块逐步学习特征表示,并使用 softmax 分类器进行分类。这是首次尝试将量子理论引入 HSI 处理模型设计。在三个 HSI 数据集上进行了大量实验,以验证所提出的 QSSPN 框架相对于最新方法的优越性。
截至 2020 年 8 月 21 日的牙买加频谱管理局 (SMA) 批准的设备认证清单。SMA 保留在此列表中添加或删除任何设备的权利。
我们现在看到的是我们在先前政府下取得的进步的完整180。从2017年到2020年,FCC仅释放了大约6,000 MHz的频谱,仅供使用许可使用,并供成千上万的MHz Spectrum供无用的使用。 拜登政府仅计划研究少于2,800 MHz。 换句话说,特朗普政府将更多的范围投入了商业市场,供消费者使用,而不是拜登政府的研究计划,甚至还没有接近。从2017年到2020年,FCC仅释放了大约6,000 MHz的频谱,仅供使用许可使用,并供成千上万的MHz Spectrum供无用的使用。拜登政府仅计划研究少于2,800 MHz。换句话说,特朗普政府将更多的范围投入了商业市场,供消费者使用,而不是拜登政府的研究计划,甚至还没有接近。
聚类是算法中的一个重要主题,在机器学习、计算机视觉、统计学和其他几个研究学科中有着广泛的应用。图聚类的传统目标是找到具有低电导性的聚类。这些目标不仅适用于无向图,而且无法考虑聚类之间的关系,而这对于许多应用来说可能是至关重要的。为了克服这些缺点,我们研究了有向图(有向图),其聚类彼此之间展示了更多的“结构”信息。基于有向图的 Hermitian 矩阵表示,我们提出了一种近线性时间的有向图聚类算法,并进一步表明我们提出的算法可以在合理的假设下以亚线性时间实现。我们的理论工作的意义通过对联合国商品贸易统计数据集的大量实验结果得到证明:我们算法的输出聚类不仅展示了聚类(国家集合)在进出口记录方面如何相互关联,还展示了这些聚类如何随着时间的推移而演变,这与已知的国际贸易事实一致。
如今,“更多的摩尔”和“超过摩尔”设备体系结构已大大提高了新型材料的重要性,从而需要提供适当的表征和计量,以实现可靠的过程控制。 例如,在多通道场效应设备或升高来源中使用的SIGE或SIP化合物的引入导致需要确定所得膜的精确组成。 在这项工作中,已经使用主要无损haxpes和TOF-SIMS研究了二进制材料(例如SIP和SIGE)的定量。 的确,虽然使用RB的主要障碍是薄膜的表征,但具有适当定量功能(例如Atom探针断层扫描和传输电子显微镜)的技术既耗时又耗时,并且由于其高度局部的分析量而缺乏灵敏度。 对于定量表征,常规的X射线光电子光谱(XPS)是一个强大的工具。 然而,其低分析深度仍然是研究掩埋界面的主要限制因素,尤其是在本研究中,因为所获得的基于SI的层在环境条件下被氧化(或者应该受到一些纳米计的金属层保护)。 ,由于电子在二元材料表面的化学组成和SIO 2在层中的深入分布,因此使用了一种基于实验室的硬X射线源(HAXPE),这既要归功于层次的SIO 2的深度分布,这要归功于电子的非弹性平均自由路径随光子能量增加的增加(铬Kα,Hν= 5414.7 ev)[1] [1]。如今,“更多的摩尔”和“超过摩尔”设备体系结构已大大提高了新型材料的重要性,从而需要提供适当的表征和计量,以实现可靠的过程控制。例如,在多通道场效应设备或升高来源中使用的SIGE或SIP化合物的引入导致需要确定所得膜的精确组成。在这项工作中,已经使用主要无损haxpes和TOF-SIMS研究了二进制材料(例如SIP和SIGE)的定量。的确,虽然使用RB的主要障碍是薄膜的表征,但具有适当定量功能(例如Atom探针断层扫描和传输电子显微镜)的技术既耗时又耗时,并且由于其高度局部的分析量而缺乏灵敏度。对于定量表征,常规的X射线光电子光谱(XPS)是一个强大的工具。然而,其低分析深度仍然是研究掩埋界面的主要限制因素,尤其是在本研究中,因为所获得的基于SI的层在环境条件下被氧化(或者应该受到一些纳米计的金属层保护)。,由于电子在二元材料表面的化学组成和SIO 2在层中的深入分布,因此使用了一种基于实验室的硬X射线源(HAXPE),这既要归功于层次的SIO 2的深度分布,这要归功于电子的非弹性平均自由路径随光子能量增加的增加(铬Kα,Hν= 5414.7 ev)[1] [1]。确认通过HAXPES测量获得的感兴趣材料的组成并计算出适当的相对灵敏因子(RSF),相同的膜以TOF-SIMS为特征。但是,例如Haxpes,SIP/SIGE层的次级离子质谱法(SIMS)表征通常由于p/ge含量的电离产量的非线性变化而受到基质效应。通过分析参考样本,遵循MCS 2+辅助离子或使用完整的光谱协议[2],可以通过分析参考样品来超越此限制。最后,计算了次级离子束的P和GE(Si)组成,并将其与X射线衍射确定的参考组成进行比较。还研究了测量值的可重复性和层氧化的影响。得出结论,通过将haxpes结果与TOF-SIM耦合,准确评估了层的深入组成和表面氧化物的厚度。
摘要:对称性破裂在化学转化中无处不在,并影响材料和分子的各种物理化学特性。 Jahn- teller(JT)六a型过渡金属 - 配体配合物的变形属于该范式。退化的3D轨道的不均匀占用迫使复合物采用轴向拉长或压缩的几何形状,从而降低系统的对称性并提升退化。已知Cu 2+的配位复合物表现出轴向伸长,而压缩却不那么普遍,尽管这可能是由于缺乏严格的实验验证。在这里,我们介绍了原型[Cu(2,2'-Bipyridine)3] 2+离子复合物的气相振动光谱,该复合物是通过使用广泛可调的IR ir Freectron Laser Laser Laser Laser Laser Laser Laser Felix获得的红外多光子分离(IRMPD)光谱。在理论的密度功能水平上预测的振动光谱几乎但对于两个JT延伸的几何形状而言并不完全相同。我们比较了实验和理论光谱,并解决了气态离子种群中复合物或其混合物的轴向拉长或压缩几何形状的问题。■简介
Antoine Dowek,Marion Berge,Patrice Prognon,François-Xavier Legrand,Eric Larquet,Eric Larquet等。通过表面增强红色纳米粒子悬架的Raman光谱,对去甲肾上腺素和肾上腺素进行了分解和定量分析。分析和生物分析化学,2021,414(2),pp.1163-1176。10.1007/S00216-021-03743-4。hal-04664781
摘要:超极化的核磁共振(NMR)提供了一组方法,可以显着解决NMR的灵敏度问题。溶解动态核极化(D-DNP)提供了一种独特而通用的方法,可检测13 C NMR信号,其灵敏度通过几个数量级增强。D-DNP的扩展应用范围现在涵盖了自然13 C丰度时对复杂混合物的分析。但是,在该区域中,它仅限于代谢物提取物。在这里,我们报告了自然丰度时生物氟-urine-的第一个DNP增强的13 C NMR分析,为这种具有挑战性的样本提供了前所未有的分辨率和敏感性。我们还表明,可以通过标准添加程序检索有关多个靶向代谢物的准确定量信息。