自闭症谱系障碍(ASD)的患病率在过去十年中有所增加。在这方面,许多新兴疗法被描述为ASD疗法。尽管ASD无法治愈,但是有几种可用的管理选项可以帮助减轻症状严重程度。ASD是高度可变的,因此,标准治疗方案和研究具有挑战性。这些疗法中的许多疗法还解决了ASD患者风险增加的合并症。这些并发诊断可以包括精神病和神经系统疾病,包括注意力缺陷和多动障碍,焦虑症和癫痫,以及胃肠道症状,例如慢性便秘和腹泻。广泛的ASD相关疾病的广泛清单和常规处方药物对ASD患者的不利影响都会影响症状。在考虑其他药物治疗或互补疗法时,请务必牢记这些潜在的相互作用。本综述介绍了涉及新型药理治疗的当前文献,例如催产素,bumetanide,乙酰胆碱酯酶抑制剂和美金素。它还讨论了其他疗法,例如饮食干预,针灸,音乐疗法,褪黑激素,以及使用技术来帮助教育。值得注意的是,其中一些疗法需要进行更多的长期研究,以确定该患者人群中特定ASD组的功效。
或活动美国精神病学协会,2013年)。根据美国精神病学协会(2013年),自闭症的患病率为1%。 在ASD患者中经常发现感觉困难(Kojovic等人,2019年),特别是体感系统困难,例如异常的皮肤敏感性[Asmika等,2018; Zhong等人,2013年](包括压力检测)和本体感受。 这些感觉异常可能会导致社会发展受损的病理生理过程[]。 本体感受是人体正在进行的空间配置的感觉注册。 它包括身体段在太空中的位置,力和运动速度以及重力和身体平衡的整合。 本体感受会影响行为调节和运动控制]。 Blanche等。 表明,患有ASD的儿童目前的本体感受的处理困难与其他发育障碍儿童及其通常发展的儿童不同。 但是,Morris等人,2015年,Fuentes等人,2011年没有确认实验范式中的这些本体感受困难。 缺陷可能主要依赖于多感官集成[]。根据美国精神病学协会(2013年),自闭症的患病率为1%。感觉困难(Kojovic等人,2019年),特别是体感系统困难,例如异常的皮肤敏感性[Asmika等,2018; Zhong等人,2013年](包括压力检测)和本体感受。这些感觉异常可能会导致社会发展受损的病理生理过程[]。本体感受是人体正在进行的空间配置的感觉注册。它包括身体段在太空中的位置,力和运动速度以及重力和身体平衡的整合。本体感受会影响行为调节和运动控制]。Blanche等。表明,患有ASD的儿童目前的本体感受的处理困难与其他发育障碍儿童及其通常发展的儿童不同。但是,Morris等人,2015年,Fuentes等人,2011年没有确认实验范式中的这些本体感受困难。缺陷可能主要依赖于多感官集成[]。
前言和对潜在受访者的注释符合其透明度和部门参与的价值,TDRA希望审查和研究其发行的监管工具的影响,以使其与发展保持一致,以便更好地参与所有利益相关者。TDRA致力于满足该行业的需求,并寻求该行业的观点和反馈。本文档的目的是邀请利益相关者关于TDRA修改TDRA -APE Spectrum Outlook 2020-2025版本1.0的评论。希望对此咨询做出回应的利益相关者应在本文档前封面上所述的响应日期或之前以书面形式给TDRA。在此咨询中,应清楚地确定对本咨询的任何回应中包含的评论。任何具有一般性的评论,而不是针对特定问题的回应。应以书面形式进行对此咨询的响应,并在本文档前封面上所述的响应日期上或之前以MS Word格式和Adobe PDF格式进行电子方式提供。响应必须伴随受访者的完整联系人详细信息(联系人名称,电子邮件地址以及电话和传真号码):SpectrumConsultation@tdra.gov.ae;执行董事Spectrum事务电信和数字政府监管局P.O.框26662阿布扎比,阿联酋受访者被告知,TDRA的一般意图是全部发布对此咨询的答复。此外,TDRA可能会在本咨询结束时自行决定生成并发布“响应摘要”文件。因此,响应摘要可能包括对已收到的评论的引用和引用(全部或部分)。TDRA认识到某些答复可能包括受访者可能不希望发布的商业敏感和机密信息。如果响应包含机密信息,则被告有责任明确标记被认为具有机密性质的任何信息。
个性化医学可能是现代医学中最有希望的领域。这种方法试图根据个人患者特征来优化疗法和患者护理。它的成功很大程度上取决于疾病的表征及其进化的方式,患者的分类,其随访和治疗方法可以优化。因此,个性化医学必须结合创新的工具来测量,集成和建模数据。朝着这一目标,临床代谢组学似乎非常适合获取相关信息。的确,代谢组学的签名为患者对病理学和/或治疗的反应,提供预后和诊断生物标志物并改善治疗结果而对患者进行分层的关键见解。但是,将代谢组学从实验室研究转换为临床实践仍然是一项挑战。核磁共振光谱(NMR)和质谱法(MS)是测量代谢组的两个关键平台。NMR具有临床代谢组学至关重要的几个优点和特征。的确,NMR光谱本质上非常健壮,可重复,无偏,定量,在结构分子水平上提供信息,几乎不需要样品制备和减少数据处理。nmr也非常适应大型队列,多点线和纵向研究的测量。本综述着重于在临床代谢组学和个性化医学背景下NMR的潜力。从临床水平上基于NMR的代谢组学的当前状态开始,并强调其优势,劣势和挑战,本文还探讨了如何与最初的“反对派”或“竞争”,NMR和MS远距离整合,并且在样本分类和生物标记方面表现出了极大的互补性。最后,观点讨论提供了对当前方法论发展的见解,这些发展可能显着提高NMR,作为用于临床应用和护理点诊断的更加紧密,敏感且易于使用的工具。由于这些进步,NMR具有强大的潜力,可以加入目前在临床环境中使用的其他分析工具。
拉曼光谱法(RS)越来越多地应用于医疗领域,以区分肿瘤与正常组织,最近的进步使其在神经外科手术中使用。本评论探讨了RS作为脑神经胶质瘤的诊断和手术辅助,详细介绍了其各种方式和应用。通过包括PubMed,Google Scholar和Elibrary在内的数据库中的全面搜索,筛选了300多个参考文献,从而产生了74篇符合纳入标准的文章。关键发现揭示了RS在神经肿瘤学上的潜力,用于检查天然活检标本,冷冻和石蜡包含的组织以及体液以及进行术中评估。rs提供了鉴定神经胶质瘤,将其与健康脑组织区分开的希望,并在切除过程中建立精确的肿瘤边界。
摘要:听觉神经病谱系障碍(ANSD)是指一系列听力障碍,其特征是声音从耳蜗传播到大脑。该缺陷可能是由于内部毛细胞(IHC),IHC色带突触(例如,谷氨酸的突触前释放),螺旋神经节神经元的突触后终末或脱蛋白神经元的突触后末端或脱糊状和肌脱肌丢失的。 迄今为止,ANSD的唯一临床治疗方案是助听器和人工耳蜗。 然而,尽管助听器和耳蜗植入技术的进步取得了进步,但感知的声音的质量仍然无法匹配正常耳朵的声音。 最近的晚期遗传诊断和临床听力学使确定病变的确切部位并表征ANSD的特定疾病机制,从而为您的预防或预防听觉神经变性带来了新的希望。 此外,涉及替换或纠正式编辑突变序列或缺陷基因以修复受损细胞的遗传路线,以使聋人的听力恢复未来显示出希望。 在这篇综述中,我们提供了有关遗传病变,听觉突触病和神经病的分子病理生理学的最新发现,以及在啮齿动物模型和临床试验中的基因治疗研究。。迄今为止,ANSD的唯一临床治疗方案是助听器和人工耳蜗。然而,尽管助听器和耳蜗植入技术的进步取得了进步,但感知的声音的质量仍然无法匹配正常耳朵的声音。最近的晚期遗传诊断和临床听力学使确定病变的确切部位并表征ANSD的特定疾病机制,从而为您的预防或预防听觉神经变性带来了新的希望。此外,涉及替换或纠正式编辑突变序列或缺陷基因以修复受损细胞的遗传路线,以使聋人的听力恢复未来显示出希望。在这篇综述中,我们提供了有关遗传病变,听觉突触病和神经病的分子病理生理学的最新发现,以及在啮齿动物模型和临床试验中的基因治疗研究。
1 杜克大学医学院心脏病学系,美国北卡罗来纳州达勒姆 2 杜克临床研究所,美国北卡罗来纳州达勒姆 3 杜克大学医学院杜克分子生理学研究所,美国北卡罗来纳州达勒姆 4 杜克大学医学院内分泌、代谢和营养学系,美国北卡罗来纳州达勒姆 5 邓迪大学人口健康与基因组学系,英国苏格兰邓迪 6 北卡罗来纳大学医学院内分泌学系,美国北卡罗来纳州教堂山 7 奥地利格拉茨医科大学内分泌和糖尿病学系 8 英国格拉斯哥大学心血管和医学科学研究所 9 英国牛津大学拉德克利夫医学系糖尿病试验组
早上好。我的名字叫查理·贝利斯(Charlie Baylis)博士,我在贝勒大学(Baylor University)担任电气和计算机工程学教授,以及国防谱系创新中心智能枢纽的总监。“智能”代表“具有自适应和可重新配置技术的频谱管理”,智能枢纽由15个大学和13个州的25位美国公民研究人员组成。我们统一的使命是通过电路从政策到自适应和重新配置。我们是通过国会拨款支持建立的,并通过陆军研究实验室进行了委托。我们不是典型的院士。我们不想仅仅希望发表有关将停滞在实验室中的技术的论文,而要迅速将优越的技术交给我们的战士和消费者的手中。我们希望将美国置于频谱中:可以说是战斗中最重要的维度和非常宝贵的自然资源。
摘要 - 高光谱成像技术的最新演变和新的新兴应用程序的扩散按下了多个时间高光谱图像的处理。在这项工作中,我们提出了一种新型的频谱拆解(SU)策略,使用出色动机的参数末端记录来说明时间频谱变异性。通过使用状态空间公式来表示多个时空混合过程,我们能够利用贝叶斯过滤机制来估计末端的变异性系数。假设丰度的时间变化在短时间间隔很小,则采用了预期最大化(EM)算法的有效实施来估计丰度和其他模型pa-Rameters。仿真结果表明,所提出的策略优于最先进的多阶段算法。
氮化物材料中的氮掺杂是改善材料特性的一种有希望的方法。的确,GESBTE相位变化合金中的N掺杂已证明可以极大地提高其无定形相的热稳定性,这是确保最终相变存储设备的数据保留所必需的。尽管建议这种合金中的N掺杂导致GE-N键的优先形成,但有关键的进一步问题,尤其是SB-N和TE-N,并且结构排列尚不清楚。在本文中,我们介绍了使用大量的N含量从0到50 at at 50 at,我们介绍了沉积的元素GE,SB和TE系统及其氮化物(即Gen,SBN和10合金)的研究。%。通过傅立叶变换红外和拉曼光谱法研究了AS沉积合金。我们确定与GE-N,SB-N和TE-N键形成相关的主动振动模式,强调了N融合对这些元素系统结构的影响。我们进一步定性地将Gen,SBN和十个实验光谱与相关理想氮化物结构的“从头开始”进行了比较。最后,对氮化元素层的分析扩展到N掺杂的GESBTE合金,从而在记忆技术中采用的此类三元系统中对氮键有更深入的了解。