致病细菌造成许多医疗保健和安全问题,包括传染病(He等,2023),食物中毒(Hussain,2016年)和水污染(Some等,2021)。由于其感染性和快速增殖,需要快速,准确的细菌检测和鉴定方法,以减少决策的时间段,从而最大程度地减少医疗保健风险,生态系统影响以及与微生物病原体相关的经济损失。基于琼脂平板上细菌细胞培养的病原体检测和鉴定已经存在不同的方法(Van Belkum和Dunne,2013年),免疫学检测(例如,酶联免疫吸附测定法) ),DNA微阵列(Colle等,2003),生物传感器(Boehm等,2007; Ahmed等,2014),或使用特定试剂敏感的使用,例如,细菌代谢(Ghatole et al。,2020; Hsieh等人,2018年)或lie of eDeNos of AdeNose(Et) ),等(Chen等,2018; Dietvorst等,2020)。然而,由于其简单性,低成本,稳健性和可靠性,传统的板块培养方法仍然是病原体检测和识别的金标准(Rohde等,2017),是细菌污染评估法规中的一种(Word Health Organisation,2017年)。实际上,板培养涉及琼脂平板的细菌生长,直到可以观察到单克隆菌落的形成为止。因此,板块培养在某种程度上容易受到人类错误的影响。菌落在形态,颜色,光泽和不透明度上等等,在仔细观察之后,有时在显微镜下,专家可以区分专家。除此之外,这项技术的主要限制是其持续时间。通常,直到菌落形成的细菌增殖需要超过18小时,对于缓慢增殖的细菌而言,必须超过3 - 4天(Franco-Duarte等,2023; Rajapaksha等,2019; Lee等,2020)。一种极端情况是军团菌,它需要非标准治疗和第二盘培养以进行适当的诊断,从而将细菌识别延迟到几周内(Tronel和Hartemann,2009; McDade,2009)。减少测量时间和加速决策的一种可能性是实施能够检测菌落并在形成的早期阶段识别的先进成像系统(Wang等,2020)。从这个意义上讲,高光谱成像是有利的,因为它以3D数据矩阵或超立方体格式提供了高分辨率图像,其中二维对应于空间信息(x,y坐标),而第三个维度对每个单独的像素(λ坐标)的光谱数据(Gowen等,2015,2015,2015; arrigoni; arrigoni et al arrigoni; arrigoni et al and arrigoni; arrigoni et al and arrigoni et al and arrigoni et al and arrigoni et al and arrigy and and and and。通常使用化学计量学来处理大量信息,以识别数据集中的模式,这些模式在裸眼中并不明显,并创建了能够对新数据进行分类的预测模型(Huang,2022)。然后可以使用这些PC进行基于PCA的判别分析(PCA-DA)(UDDIN主成分分析(PCA)通常与高光谱成像结合使用,以将光谱图像数据集减少为称为主成分(PCS)的代表变量(Abdi和Williams,2010年)。
质谱法在阐明未知分子的结构和随后的科学发现中起着基本作用。结构阐明任务的一种结构是给定质量谱的分子结构的有条件生成。朝着针对小分子的更有效和有效的科学发现管道,我们提出Diffms,这是一个由公式限制的编码码头生成网络,可在此任务上实现最先进的性能。编码器利用变压器档位,并模型质谱域知识,例如峰值公式和中性损耗,而解码器是一个离散的图形扩散模型,该模型受已知化学公式的重原子组成限制。为了开发一个桥梁解码器,它可以弥合潜在的嵌入和分子结构,我们用指纹结构对预处理扩散解码器,这些解码器几乎以无限的量为单位,与结构 - 光谱对相对,以数千的数量为单位。在已建立的基准上进行的广泛实验表明,DIFFMS在从头分子上构成现有模型。我们提供了几种消融,以揭示我们扩散和预训练方法的有效性,并随着预训练的数据集尺寸的增加而显示出一致的穿孔缩放。DIFFMS代码可在https://github.com/coleygroup/diffms上公开获得。
• 独特的破裂算法,比传统的信号导数更强大 • 用于 EPD 处理的大量高级算法 • 一键式概念,轻松生成算法 • 可扩展平台(单腔或集群工具) • 快速配方配置,实现强大的端点创建 • 高级设备控制 (AEC) / 过程控制 (APC) (wafer2wafer、Run2Run、Lot2Lot、Clean2Clean) • SQL 数据库,方便进行数据比较和解释 • 不同的用户级别 • 再处理功能以验证过程(EPD) • 统计工具 • 灵活的工具远程连接
铅卤化物钙钛矿纳米晶体是经典和量子光发射的有前途的材料。要了解这些出色的特性,需要对带边的激子发射进行彻底的分析,这是由于扩大效果而在整体和室温研究中无法达到的。在这里,我们报告了中间量子限制方案中单个CSPBBR 3 NC的光致发光的低温温度研究。我们揭示了观察到的光谱特征的尺寸依赖性:亮点激子能量分裂,TRION和BIEXCITON结合能以及光学声子复制频谱。此外,我们表明明亮的三重能量分离与纯交换模型一致,并且可以简单地考虑发射偶极子和发射状态的种群的方向来合理化所记录的极性特性和光谱。
Spectre攻击通过在投机执行过程中泄漏秘密来保证恒定时间的cryg-fographic代码。最近的研究表明,可以保护此类代码免受头顶上最小的spectre-v1攻击,但叶子打开了保护其他幽灵变量的问题。在这项工作中,我们设计,验证,实施和验证一种新方法,以保护加密代码免受所有已知类别的Specter攻击,特别是Spectre-RSB。我们的方法结合了一个新的依赖价值的信息流类型系统,该系统即使在投机执行和编译器转换下也不会泄漏,并在生成的低级代码上启用它。我们首先使用COQ证明助手证明了类型系统的健全性和编译器转换的正确性。然后,我们在jasmin框架中实施了我们的方法,用于高保险密码学和DE-MONSTRATE,即大多数密码原始人的所有幽灵构图所产生的间接费用低于2%,对于更复杂的Quampuan-tum键后钥匙封装机制Kyber kyber kyber的较为复杂的范围仅为5-7%。
大气中子辐照谱仪(ANIS)是中国散裂中子源(CSNS)的一条新光束线,主要用于现代微电子的加速测试。它具有类似大气的中子谱,具有准直束斑和泛光束斑。ANIS 总长 40 米,配备中子快门、飞行管、中子扩展器、通量控制器、准直器、清除磁铁、中子滤波器以及光束线屏蔽。ANIS 后端设有控制室、操作室和储藏室。设计、组装、检查测试和初始调试测试于 2022 年成功完成。ANIS 目前处于科学调试的高级阶段,用于测量不同配置下的中子谱、通量和剖面。使用裂变电离室 (FIC)、位置灵敏气体电子倍增器 (GEM)、活化箔和单晶金刚石探测器测量了中子束特性。在这项工作中,我们介绍了 ANIS 的测量光束规格和光束评估,这对于即将启动的 ANIS 用户计划很有希望。还介绍了早期操作和用户实验。
1 瑞士西北应用科学与艺术大学 FHNW 工程学院,Bahnhofstrasse 6, 5210 Windisch, Switzerland; andrea.battaglia@fhnw.ch (AFB); muriel.stiefel@fhnw.ch (MZS) 2 欧洲空间研究与技术中心 (ESTEC),欧洲空间局,2201 Noordwijk,荷兰 3 Mullard 空间科学实验室,伦敦大学学院,Holmbury St. Mary,Dorking RH5 6NT,英国 4 加州大学伯克利分校空间科学实验室,7 Gauss Way,伯克利,CA 94708,美国 5 粒子物理和天体物理研究所 (IPA),瑞士苏黎世联邦理工学院 (ETHZ),Wolfgang-Pauli-Strasse 27,8039 苏黎世,瑞士 6 天体粒子与宇宙学,巴黎城大学,CNRS,CEA,F-75013 巴黎,法国 7 美国国家航空航天局戈达德太空飞行中心,8800 Greenbelt Road,Greenbelt,MD 20771,美国; albert.y.shih@nasa.gov (AYS) 8 波茨坦莱布尼兹天体物理学研究所 (AIP), An der Sternwarte 16, 14482 Potsdam, 德国; awarmuth@aip.de (AW); mverma@aip.de (MV) 9 格拉茨大学物理研究所和 Kanzelhöhe 天文台,Universitätsplatz 5, 8010 Graz, Austria 10 都柏林高等研究院,31 Fitzwilliam Place, Dublin D02 XF86,爱尔兰; peter.gallagher@dias.ie (PTG) 11 格拉斯哥大学物理与天文学院,University Avenue, Glasgow G12 8QQ,UK; iain.hannah@glasgow.ac.uk (IH) 12 诺森比亚大学数学、物理和电气工程系,泰恩河畔纽卡斯尔 NE1 8S,英国 13 捷克科学院天文研究所 (CAS),251 65 Ondˇrejov,捷克共和国; jana.kasparova@asu.cas.cz 14 西肯塔基大学物理与天文学系,Bowling Green, KY 42101,美国 15 图像和数据分析方法 (MIDA),Dipartimento di Matematica,Università di Genova,Via Dodecaneso 35,I-16146 Genova,意大利; piana@dima.unige.it (MP) 16 Centrum Bada´n Kosmicznych, PAN, ul. Bartycka 18a, 00-716 华沙, 波兰; tmrozek@cbk.pan.wroc.pl (TM) 17 Istituto Nazionale di Fisica Nucleare (INFN-Pisa), 56127 Pisa, Italy 18 Institut de Recherche en Astrophysical et Planétologie (IRAP), National Center for Space Studies (CNES), Université Toulouse III, 31062 Toulouse, France 19 物理学加州大学圣克鲁斯分校,1156 High St.,Santa Cruz,CA 95064,USA 20 圣克鲁斯粒子物理研究所,加州大学圣克鲁斯分校,Santa Cruz,1156 High St.,Santa Cruz,CA 95064,USA 21 空间研究和天体物理仪器实验室 (LESIA),CNRS-UMR 8109,Observatoire de Paris,5 Place J.扬森, 92195 默东, 法国; nicole.vilmer@obspm.fr * 通讯地址:daniel.ryan@fhnw.ch
摘要:强制游泳压力测试(FST)广泛用于筛查具有潜在抗抑郁活性的药理或非药理策略。最近的数据表明,可以使用连续五天重复进行FST(即5D-RFSS),可用于在小鼠中产生强大的抑郁型表型。然而,最近对5D-RFS的面部,构造和预测有效性受到了挑战。这项研究利用了最近发现的优势,表明当动物在黑暗阶段发生压力时,增加了小鼠对焦虑的脆弱性,以提供对该模型相关性的新见解。我们的结果表明,相对于对照非压力动物(假),在5D-RFSS小鼠中固定的时间逐渐增加。三个星期后,我们注意到注射了车辆化合物(VER)的5D-RFSS小鼠在FST中仍然表现出很高的固定性,而这种行为被抗抑郁药阿米替林(AMI)逆转。然而,5D-RFSS/VER和5D-RFSS小鼠/AMI小鼠在开放式场中表现出正常的表现,新颖性抑制了进食和尾悬架测试。尽管缺乏普遍的行为效果,但表征下丘脑 - 垂体 - 肾上腺(HPA)轴反应性的不同参数的损害在5D-RFSS小鼠/vER中证明了5DD-RFSS小鼠/AMI中的反应性。尽管HPA轴异常,但相对于对照组,中央血清素能系统的活性仍未受到5D-RFSS小鼠的影响。有必要进行进一步的实验,以使该模型适合对抑郁症进行建模,从而重新确定其翻译适用性。从我们的结果中,建议学习的固定性不会复制在其他慢性抑郁模型中观察到的广泛抑郁症状,例如无法预测的慢性轻度压力(UCMS)模型,慢性社会失败压力(CSDS)模型或慢性皮质酮(Cort)模型(CORT)暴露,但其在HPA AxiS上的影响。
常见的样品污染物,例如苯酚或鸟嘌呤盐可以错误地升高您的明显样品浓度或抑制下游反应。这就是为什么仅纯度比率就无法说明您的样本是否足够干净的整个故事。Thermo Scientific™Acclaro™样本智能技术可以识别多种不希望的物质,甚至可以识别DNA何时污染RNA样品。