当离子源在降低压力下充满气体的电池中的两个电极之间施加电势差时,就会发生光泽放电。在用于元素分析的配置中,样品充当阴极,其表面被撞击气体离子溅射。溅射颗粒(主要是中性原子)在血浆中下游电离。因为溅射和电离的过程是分离的,尤其是在脉冲模式操作中,因此观察到最小的非光谱基质效应。因此,可以建立相对灵敏度因子(RSF),实现定量分析或使用简单的离子束比(IBR)进行半定量分析来实现完美条件。
1 亚琛工业大学 I. 物理研究所和 JARA-FAME,52056 亚琛,德国 2 中东技术大学 (METU) 物理系,06800 安卡拉,土耳其 3 格勒诺布尔阿尔卑斯大学、萨瓦大学勃朗峰分校、CNRS、LAPP-IN2P3,74000 安纳西,法国 4 北京航空航天大学 (BUAA),北京 100191,中国 5 中国科学院电工研究所,北京 100190,中国 6 中国科学院高能物理研究所,北京 100049,中国 7 中国科学院大学 (UCAS),北京 100049,中国 8 INFN Sezione di Bologna,40126 博洛尼亚,意大利 9 博洛尼亚大学,40126意大利博洛尼亚 10 麻省理工学院 (MIT),美国马萨诸塞州剑桥 02139 11 马里兰大学东西方空间科学中心,美国马里兰州帕克城 20742 12 马里兰大学 IPST,美国马里兰州帕克城 20742 13 CNR – IROE,意大利佛罗伦萨 50125 14 欧洲核子研究中心 (CERN),瑞士日内瓦 1211 23 15 日内瓦大学 DPNC,瑞士日内瓦 1211 4 16 格勒诺布尔阿尔卑斯大学,CNRS,格勒诺布尔 INP,LPSC-IN2P3,法国格勒诺布尔 38000 17 格罗宁根大学卡普坦天文研究所,荷兰格罗宁根 9700 AV 邮政信箱 800
摘要 自从实验证实行星、卫星和行星际介质中存在大量复杂的有机化合物以来,对高效仪器进行明确的太阳系成分原位分析的科学需求日益增加。新的实验数据将揭示太阳系的化学历史和外星有机化合物的可能形成机制。基于空间级 Orbitrap™ 的高分辨率质谱仪将允许获取所需的数据。在本研究项目范围内,对 CosmOrbitrap 项目内开发的 Lab-CosmOrbitrap 和 OLYMPIA 质谱分析仪进行了优化。已经开发并评估了为未来空间级仪器提出的新采样系统和电离机制。测量了当前设计的空间仪器(CRATER、CORALS 和 HANKA)所需的固体(真实的月球碎片)和气体样品(He、C 2 H 4 、N 2 和 CO)的实验校准数据。
Thermo Scientific™ Element GD Plus™ GD-MS 重新定义了先进高纯度固态材料的分析。对于高通量和超低 ppb 级检测限,Element GD Plus GD-MS 是常规和研究应用中进行批量样品分析和深度剖析的最方便和最强大的工具。
超导纳米线单光子探测器(SNSPD)在不同基底和光子结构上的混合集成在开发基于单光子探测的复杂光子器件方面具有巨大潜力,例如用于单光子级微弱光光谱传感的光子计数重构光谱仪。本文引入SNSPD的级联吸收效应来开发光子计数重构光谱仪。该装置包括作为空间色散元件的罗兰光栅和位于光栅聚焦区域的定制级联SNSPD阵列。SNSPD的光谱响应可以通过其螺旋图案和阵列中的级联吸收进行灵活调制,并以此作为光谱重构的基础。设计和制作了一个原型装置来演示该方案的原理。实验结果表明了通过螺旋图案设计和SNSPD阵列的级联吸收效应调制光谱响应的可行性。它支持波长范围为1,495至1,515 nm的光谱测量和重构,光谱分辨率为0.4 nm。该方案仅通过SNSPD的设计就实现了光谱重构的基础,而无需额外光子结构的光谱调制效应。它为开发高光子利用率的器件提供了一种有趣且有前途的方法。
基于光子集成电路的传感平台已显示出巨大的希望,但是它们需要集成的光学读数技术中的相应进步。在这里,我们提出了一个片上光谱仪,该光谱仪利用了综合的薄膜Niobate调制器来产生频率 - 敏捷的电频率梳子,以询问芯片尺度温度和加速传感器。chir梳过程允许超速射频驱动电压,该电压比文献中最低的少数数量较少七个数量级,并且是使用芯片尺度,微控制器驱动的直接数字合成器生成的。片上梳状光谱仪能够同时询问片上温度传感器和芯片外部,微型制动的光力加速度计,其尖端敏感性分别为5 µk·Hz -1/2和≈130µm·S -2·s -2·hz-hz -1/2。该平台与广泛的现有光子集成电路技术兼容,在该技术中,其频率敏捷性和超低射频功率要求的组合预计有望在量子科学和光学计算等领域中应用。光子集成电路(PIC)技术具有低成本,高精度的野外传播感应的巨大潜力。但是,解锁这些功能不仅需要传感器,而且还需要光学读数的整合。[2,3]这些类型的测量通常需要在MHz水平上狭窄的梳齿间距,并在GHz水平上梳子跨度,从而导致敏感且高动态范围读数。芯片尺度的光学频率梳子非常适合这些光子读数需求,因为它们具有高速,多路复用测量的能力而无需任何运动部件,[1]因此允许将光子传感器转移到数字输出。尤其是,电频率梳子不仅可以集成,而且还可以具有足够的频率敏捷性来实现探测原子过渡所需的高分辨率以及基于光学(和光力学的)腔传感器,其中需要对腔运动进行测量以读取传感器。
图7:用于监视用户访问和评估审计跟踪的SCIEX OS软件的功能。审核跟踪视图允许用户轻松过滤高危事件,并启用数据完整性功能以满足合规性要求。该软件具有中央管理员控制台(CAC),可在所有系统中管理用户和组,角色定义,工作站和项目。CAC功能支持受监管和不受监管的依从性标准。配置模块使用户可以快速为管理员,方法开发人员,分析师和审阅者级别设置角色和访问级别。
毒理学实验室面临许多挑战,包括复杂基质中极大量的样品以及设计药物的泛滥。实验室必须快速且低成本地进行筛选和量化。虽然这些挑战可以单独解决,但用一种分析方法解决所有挑战要困难得多。在这里,我们提出了一种新颖的工作流程,它结合了液相色谱和高分辨率精确质量 (HRAM) 质谱法,可以在一次运行中筛选和量化大面板,同时保留回顾性查询分析数据以寻找新化合物或意外化合物的能力。此外,我们证明了在一种质谱仪型号上开发的方法可以在较新的仪器型号上成功运行。
在这项研究中,Mengying Yuan和合着者引入了二维石墨烯(GO)片(GO)片,具有高表面积和出色的机械性能成固体聚乙烯氧化物/锂盐电解质。GO板提高了离子电导率,并提高了聚合物电解质的拉伸强度,并且似乎显着增强了锂离子电池的性能。为了测量锂盐解离分数,使用了带有Microlab软件的Cary 630 FTIR系统。分离部分是作为位于两个特定范围的峰下面的各个区域的比率:620至624 cm –1范围,代表解离的“游离” CLO 4