在闪烁检测器中,发光材料构成了吸收辐射的活性区域,有多种具有相同特性的闪烁材料,为此,将使用Labr 3闪烁晶体。工作原理是电离辐射与令人兴奋的特定原子水平的材料相互作用,因此,当它去脱落时,会发出特征波长的光脉冲。发出的光量与撞击伽玛射线的能量成正比。用于收集光脉冲,将晶体耦合到光电层流(PMT)或光电二极管,其中光子被转换为电流。如果正确设置了检测器,则PMT阳极处的输出电流提供有关入射伽马射线的能量和时间的信息,因为响应非常快。
在本研究中,我们分析了锂离子电池的局部非线性电化学阻抗谱 (NLEIS) 响应,并从测量的 NLEIS 数据中估算模型参数。该分析假设单粒子模型包括电极粒子内锂的非线性扩散和其表面的不对称电荷转移动力学。基于此模型并假设一个中等较小的激励幅度,我们系统地推导出直至二次谐波响应的阻抗的解析公式,从而可以根据模型中的物理过程和非线性对每个贡献进行有意义的解释。我们探讨了这对参数化的影响,包括使用最大似然进行结构识别分析和参数估计,同时使用了合成和实验测量的阻抗数据。可以精确拟合阻抗数据,但拟合的扩散时间尺度的不一致性表明非线性扩散模型可能不适用于所考虑的电池。还通过使用参数化模型预测时域电压响应来证明模型验证,并且结果表明这与测量的电压时间序列数据 (11.1 mV RMSE) 具有出色的一致性。© 2023 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款分发 (CC BY,http://creativecommons.org/licenses/ by/4.0/ ),允许在任何媒体中不受限制地重复使用作品,前提是对原始作品进行适当的引用。[DOI:10.1149/ 1945-7111/acada7 ]
视频:液体喷射光电光谱(LJ-PES)在对液体水,水溶液和挥发性液体的电子结构的实验研究中取得了突破。这种技术的新颖性可以追溯到25年以上,其中在于在真空环境中稳定连续的微米直径LJ,以实现PES研究。PES中的关键数量是与电子垂直促进到真空中的最可能的能量:垂直电离能量,vie,for中性和阳离子,或垂直脱离能量VDE,用于阴离子。这些数量可用于鉴定物种,其化学状态和粘结环境及其在溶液中的结构特性。准确测量VIE和VDE的能力至关重要。相关的主要挑战是针对明确定义的能源参考的确定这些数量。仅采用最近开发的方法是通常的测量,通常对液体可行。实际上,这些方法涉及将凝结的概念应用于从液体样品中获取光电子(PE)光谱中,而不是仅依赖自第一个LJ-PES实验以来通常实施的分子 - 物理处理。这包括在自由电子检测之前明确考虑电子遍及液体表面的遍历。与精确的电离光子能量一起,此功能可以直接确定VIE或VDE,相对于液相真空水平,从任何感兴趣的PE特征中都可以直接确定。我们相对于液态真空水平的测量VIE和VDE的方法特别涉及检测样品中发出的最低能量电子,这些电子的能量勉强能够克服表面电势并积聚在液态光谱的低能尾巴中。通过将足够的偏置电位应用于液体样品,通常可以暴露出这种低能的光谱尾部,其尖锐,低的能量截止均显示出在测得的光谱中揭示真正的动力学零,而与实验中的任何扰动固有或外部电位无关。此外,通过还确定凝结物质中常见平衡能级的溶液 - 相VIE和VDE,费米水平可以量化固态PES溶液溶液工作功能,Eφ和液体可效应表面偶极效应中普遍实现的参考能。使用LJS,只能通过控制不良的表面充电和所有其他外部电势来正确访问费米水平,从而导致所有PE特征的能量移动,并排除准确的电子能量访问。更具体地说,必须设计条件以最大程度地减少所有不良电位,同时保持样品和设备之间的平衡,内在的(接触)的电位差。建立这些液相准确的能量引用方案,重要的是,可以从近偏差溶液中确定VIE和VDE,以及批量电子结构和界面效应之间的定量区别。■密钥参考我们将在此处审查和示例这些方案,并在此处审查这些方案,并在此处进行几种示例性水溶液,重点关注最低的离子化或最低能源 - 能源PE峰,这与水相种类的氧化稳定性有关。
摘要:功率变压器对于最常见的电网的可靠性至关重要,该电网最常见于牛皮纸隔热并浸入矿物油中,其中纸张的老化状态主要与变压器的运行寿命相关。聚合度(DP)是评估绝缘纸的老化状况的直接参数,但是现有的DP测量通过粘度方法具有破坏性和复杂性。在本文中,引入了Terahertz时域的表格(THZ-TDS),以达到对绝缘纸DP的快速,无损的检测。绝缘纸的吸收光谱表明,在1.8和2.23 THz处的特征峰区都表现出与DP的对数线性定量关系,并且通过对不同类型的绝缘纸进行上述关系来确认它们的普遍性。傅立叶变换红外光谱(FTIR)分析和分子动力学建模进一步表明,1.8和2.23 THz分别与水 - 纤维素氢键强度和无定形纤维素的生长有利相关。本文证明了将THZ-TDS应用于绝缘纸中DP的无损检测并分配了特征吸收峰的振动模式的生存能力。
开发了用于激发和记录厚度 h S 300 ÷ 500∙10 3 纳米和直径 D 60 ÷ 100∙10 – 3 米的 SiO 2 /Si 圆盘状晶片中的阻尼弯曲共振的方法、设计和制造了用于测量结构敏感内耗 (IF) Q – 1 的装置。开发了用于无损检测圆盘状半导体基板中结构缺陷积分密度 nd 和破损层深度 h bl 的技术。通过测量谐波频率 f 0 、f 2 下的 IF 背景 Q – 1 0,可以通过实验确定振动圆盘的节点线。这样就可以对寻找这些节点线的理论计算进行修正,同时考虑到圆盘的线性尺寸及其连接方法。研究了 X 射线和电子辐照 SiO 2 /Si 盘状晶片板后的温度中频谱 Q – 1 ( Т )。结果发现,在测量过程中,Si 结构缺陷的退火会改变温度中频谱 Q – 1 ( Т ) 的形状。在以速度 V Δ T/ Δ t ≤ 0.1 K/с 加热 SiO 2 /Si 晶片板时,可以观察到由点缺陷形成的中频峰 Q – 1 M 。这使得能够确定辐射缺陷各向异性复合体重新取向的活化能 H 。通过建立中频背景参数 Q – 1 0 的稳定性,可以确定半导体晶片板及其基于的器件的抗辐射性。所提出的方法可用作控制微电子用半导体晶片板晶体结构缺陷的无损方法。
蛋白质吸附到固体碳水化合物界面对许多生物过程至关重要,特别是在生物质分解中。为了设计更有效的酶将生物质分解成糖,必须表征复杂的蛋白质-碳水化合物界面相互作用。碳水化合物结合模块 (CBM) 通常与微生物表面束缚的纤维素小体或分泌的纤维素酶相关,以增强底物的可及性。然而,由于缺乏机制理解和研究 CBM-底物相互作用的合适工具包,人们并不十分了解 CBM 如何识别、结合和与多糖分离以促进有效的纤维素分解活性。我们的工作概述了一种使用高度多路复用的单分子力谱分析研究 CBM 从多糖表面解离行为的通用方法。在这里,我们应用声学力谱 (AFS) 来探测热纤梭菌纤维素体支架蛋白 (CBM3a),并测量其在生理相关的低力加载速率下从纳米纤维素表面的解离。展示了一种自动微流体装置和方法,用于将不溶性多糖均匀沉积在 AFS 芯片表面。野生型 CBM3a 及其 Y67A 突变体从纳米纤维素表面解离的断裂力表明不同的多峰 CBM 结合构象,并使用分子动力学模拟进一步探索结构机制。应用经典动态力谱理论,推断出零力下的单分子解离率,发现其与使用带有耗散监测的石英晶体微天平独立估算的本体平衡解离率一致。然而,我们的研究结果也强调了应用经典理论来解释纤维素 - CBM 键断裂力超过 15 pN 的高度多价结合相互作用的关键局限性。
手稿收到2022年5月6日;修订于2022年7月5日; 2022年7月15日接受。出版日期2022年8月16日;当前版本的日期2022年9月8日。这项工作得到了欧洲领导力(ECSER)联合企业的电子组件和系统的支持(JU),根据赠款101007247; JU获得了欧盟2020年Horizon的研究与创新计划的支持,以及芬兰,德国,爱尔兰,瑞典,意大利,奥地利,冰岛和瑞士的支持。副编辑协调审核过程的是Chao Tan博士。(通讯作者:Roberta Ramilli。)Roberta Ramilli,Marco Crescentini和Pier Andrea Traverso在电气,电子和信息工程部(DEI),“ G。Marconi,“博洛尼亚大学,意大利博洛尼亚40136(电子邮件:Roberta。) ramilli@unibo.it; m.crescentini@unibo.it; pierandrea.traverso@unibo.it)。 Francesco Santoni,Alessio de Angelis和Paolo Carbone与佩鲁吉亚大学工程系,意大利佩鲁吉亚06125(电子邮件:francesco.santoni@unipg.it; Alessio.deangelis@deangelis@unipg.it; Paolo; Paolo; Paolo。 carbone@unipg.it)。 数字对象识别10.1109/tim.2022.3196439Marconi,“博洛尼亚大学,意大利博洛尼亚40136(电子邮件:Roberta。ramilli@unibo.it; m.crescentini@unibo.it; pierandrea.traverso@unibo.it)。Francesco Santoni,Alessio de Angelis和Paolo Carbone与佩鲁吉亚大学工程系,意大利佩鲁吉亚06125(电子邮件:francesco.santoni@unipg.it; Alessio.deangelis@deangelis@unipg.it; Paolo; Paolo; Paolo。carbone@unipg.it)。数字对象识别10.1109/tim.2022.3196439
多对象光谱(MOS)是宇宙起源(COR)计划的技术发展优先级。在基于地面的MOS应用(例如,机器人配置的纤维和打孔板)中流行的孔径控制方法是刚性的,对于太空飞行而言是不实用的。微糖阵列(MSA)技术解决了此问题。MSA充当适应性的缝隙面膜。可以对数组进行编程,以提供与天空中稀疏分布的源相对应的任何缝隙。也可以对其进行编程以在扩展源上提供形状的缝隙。这种NGMSA SAT的开发重点介绍了当前宇宙起源计划优先事项的技术进步以及IR/光学/UV(IROUV)战略任务,该战略使命是十分纪念日调查:2020年代(PDAA)的天文学和天文学发现途径和天文学发现的途径。该项目的主要目的是从技术准备水平(TRL)3至5中以较大的格式(736×384,282.6k总像素)提高静电致动MSA,以支持PDAA-RECECMONTED IROUV战略任务。
1肯塔基大学肯塔基大学物理与天文学系,肯塔基州列克星敦40506,美国2化学与材料工程系,肯塔基大学,肯塔基大学,肯塔基州肯塔基州40506,美国3美国通用汽车全球研究与发展中心,沃伦,密歇根州沃伦,密歇根州48090,美国48090,美国1肯塔基大学肯塔基大学物理与天文学系,肯塔基州列克星敦40506,美国2化学与材料工程系,肯塔基大学,肯塔基大学,肯塔基州肯塔基州40506,美国3美国通用汽车全球研究与发展中心,沃伦,密歇根州沃伦,密歇根州48090,美国48090,美国
但是,AMP 也存在一些缺点,包括潜在的毒性、对蛋白酶的敏感性、自发或诱导的结构可塑性 [4,5] 和高生产成本,这些都限制了它们的商业化和临床的系统应用。虽然人们已经做出了广泛的尝试来克服这些障碍,但主要的研究方向集中在研究 AMP 的生物活性、其天然结构和在膜存在下的构象偏好之间的相互关系,以及它们有效的膜结合,[6] 以提供临床相关的配方。[7] 密度泛函理论模拟以及深度学习算法和分子动力学的结合构成了有前途的工具,可用于开发在特定条件下更快地发现有效和选择性 AMP 的理论依据,[8–10] 但这些方法仍然依赖实验数据来确定 AMP 和膜相互作用的结构与功能关系。因此,同时,开发分析工具的主要动力在于能够提供有关 AMP 结构、其分子特异性的详细信息,以及直接和快速探测其在生物适用环境中相互作用的性质和程度。[7,11,12] 必须应用互补方法来深入了解这些系统。[13,14]