1 University of California, Irvine, United States of America 2 Ulm University, Germany 3 Texas A&M University, United States of America 4 CNR - Istituto Nazionale di Ottica, Italy 5 Max Planck Institute for the Science of Light, Erlangen, Germany 6 University of Ottawa / Max Planck U Ottawa Centre, Canada 7 University of Paderborn, Germany 8 University of Rochester, United States of America 9西班牙马德里大学10号瑞士伯恩大学11号伯恩大学11. degli studi studi studi roma tre,意大利12.材料研究与工程研究所(IMRE),科学技术与研究机构(A * Star),138634,138634,新加坡13 Ningapore 13 Bar Ilan Universiti牛津大学,英国牛津大学17物理系,俄勒冈州光学,分子和量子科学中心,俄勒冈大学,美国美国俄勒冈大学18号化学和生物化学系,俄勒冈州光学,分子和量子科学中心,俄勒冈大学,美国欧洲俄勒冈大学,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国的,22湾22美国大学,美国大学23,德国汉堡24 NRNU“ MEPHI”,俄罗斯莫斯科,俄罗斯25理论凝分物理学和IFIMAC,Ifimac,Ifimac,西班牙马德里大学26英国沃尔弗汉普顿大学,英国沃尔夫汉大学,英国27英国俄罗斯Quantum Center,俄罗斯27俄罗斯Quantum Center,俄罗斯
功能性近红外光谱(FNIRS)由于其优势,例如非侵入性,用户安全性,可负担性和可移植性,引起了脑部计算机界面(BCI)(BCI)的越来越多的关注。但是,FNIRS信号是高度主题的,并且重新测试可靠性较低。因此,在每次使用基于FNIRS的BCI之前,都需要使用个体的校准,以实现实用BCI应用的高度高性能。在这项研究中,我们提出了一种基于基于受试者的基于受试者FNIRS的BCI的新型深卷卷神经网络(CNN)的方法。共有18名参与者进行了基于FNIRS的BCI实验,该实验的主要目标是将精神算术任务与闲置状态任务区分开。采用了一项受试者的交叉验证,以评估所提出的基于受试者的基于FNIRS的BCI的平均分类精度。结果,据报道,该方法的平均分类准确性为71.20±8.74%,高于有效BCI通信的阈值准确性(70%),以及使用常规收缩线性判别分析获得的(65.74±7.68%)。要达到与拟议的基于受试者的基于FNIRS的BCI相当的分类精度,对于基于传统的受试者基于FNIRS的BCI,必须进行24次培训试验(约12分钟)。预计我们的基于CNN的方法将减少长期个人校准会话的必要性,从而显着增强基于FNIRS的BCIS的实用性。
1 加利福尼亚大学欧文分校,美国 2 乌尔姆大学,德国 3 德克萨斯 A&M 大学,美国 4 CNR - 意大利国立奥蒂卡研究所 5 马克斯普朗克光科学研究所,埃尔朗根,德国 6 渥太华大学 / 马克斯普朗克渥太华大学中心,加拿大 7 帕德博恩大学,德国 8 罗切斯特大学,美国 9 马德里康普顿斯大学,西班牙 10 伯尔尼大学,瑞士 11 罗马第三大学,意大利 12 新加坡科学技术研究机构 ( A * STAR ) 材料研究与工程研究所 ( IMRE ),138634 13 巴伊兰大学,以色列 14 日本理化学研究所,SPring-8 中心 15 华东师范大学精密光谱国家重点实验室,中国 16 牛津大学,英国 17俄勒冈大学物理学系,俄勒冈光学、分子和量子科学中心,美国 18 俄勒冈大学化学与生物化学系,俄勒冈光学、分子和量子科学中心,美国 19 密歇根大学,美国 20 中国科学技术大学,中国 21 贝勒大学,美国 22 普林斯顿大学,美国 23 德国汉堡电子同步加速器中心 24 俄罗斯莫斯科国立工程物理学院 25 马德里自治大学理论凝聚态物理系和 IFIMAC,西班牙 26 伍尔弗汉普顿大学,英国 27 俄罗斯量子中心,俄罗斯
在 PC IV 中,您已经学习了布洛赫方程、拉比振荡和脉冲序列,它们是基于核或电子自旋与无线电波之间的相干相互作用来提取有关物质结构和动力学特性的有用信息的方法。原则上,这些方法可以转移到光谱学领域以达到相同的目的。不幸的是,在光频率下,人们必须处理不同的、更快的松弛过程,这些过程会破坏相干性。例如,在 NMR 中,由于 ν 3 缩放(其中 ν 是发射频率),自发辐射非常慢,以至于它对使自旋系统达到热平衡的贡献可以忽略不计。相反,在光频率下,自发辐射是最重要的退相干源之一。尽管如此,激光源和技术的进步为原子和分子的相干操控提供了大量可能性,如今这些可能性在量子信息科学和飞秒化学等不同领域都有重要应用。
纠缠光子表现出非经典的光物质相互作用,为材料和分子科学创造了新的机会。例如,在纠缠双光子吸收中,强度依赖性呈线性变化,就好像只有一个光子存在一样。纠缠双光子吸收截面接近但不匹配单光子吸收截面。纠缠双光子截面也不遵循经典的双光子分子设计图案。诸如此类的问题为丰富但新兴的纠缠光物质相互作用领域埋下了种子。从这个角度来看,我们使用纠缠光子光谱的实验发展来概述该领域的现状。既然已经概述了基本工具,现在是时候开始探索材料、分子和设备如何控制或利用与纠缠光子的相互作用了。
2 +,使用相对论量子场理论中的功能方法,即量子铬动力学(QCD)。到此为止,我们通过夸克 - diquark方法将三夸克faddeev方程减少到两体方程,在该方法中,重子被视为夸克和有效的diquarks的绑定状态。这种方法已成功用于轻巧和奇怪的重子。夸克 - diquark bethe salpeter振幅(BSA)的伯特salpeter方程(BSE)量达到相互作用内核的夸克乒乓交换。使用彩虹束截断中的Alkofer-Watson-Weigel相互作用确定夸克和diquark成分。BSE是通过将其转换为特征值问题并解决Quarkdiquark BSA的狄拉克敷料功能来实现的,我们使用Chebyshev扩展进行了评估。特征值问题的矩阵与这些考虑因素以及BSE的颜色和平流结构一起构建。这种结构由包含BSE的颜色迹线和avor因子的矩阵表示,以进行不同的diquark跃迁。我们在质量网格上计算地面和激发态的特征值,在质量网格中,物理状态对应于其相应特征值等于一个的条件。结果表明,基态质量与实验的总体一致,在此我们将模型比例设置为基态质量相对于实验质量的平均比率。激发态显示出比接地状态更高的高估。三重迷人的巴里昂也同意晶格QCD结果。使用QCD的潜在模型与晶格QCD和理论计算一致。仍然需要计算双重魅力的重子。