对脑血流无创和高灵敏度测量对于临床应用至关重要,例如测量氧代谢率1、2和监测颅内压。3,4此外,尽管主要使用功能磁共振成像和近膜光谱光谱(FNIRS)的神经科学应用,例如功能激活映射5、6和无创脑 - 计算机界面7、8,但这些应用可以从功能性共脑血液流量测量中受益。9 - 11弥漫性控制光谱(DCS)12是一种有前途的非侵入性光学技术,用于监测细胞的血液流量13、14和用于测量手指敲击9和视觉刺激期间的皮层功能激活10、11个任务。dcs通过将相干的光耦合到主题中,并测量由光散射出主体产生的斑点场中的波动来测量深度组织动力学。12、15、16增加了源 - dcs optodes的检测器分离(ρ),增加了在头皮和头骨下传播的检测到的光子的比例,深入脑皮质。17 - 19但是,对深组织的敏感性的提高是以减少
我们研究了在一系列实验相关几何中通过 Kitaev 量子自旋液体 (QSL) 屏障隧穿的光谱特征。我们结合了弹性和非弹性隧穿过程的贡献,发现在流动自旋子模式下的自旋翻转散射会导致隧穿电导谱的间隙贡献。我们讨论了在将候选材料 α -RuCl 3 驱动到 QSL 相时产生的磁场中出现的光谱变化,并提出了横向 1D 隧道结作为此范围内的可行设置。特征自旋间隙是分数化 QSL 激发的明确特征,可将其与磁振子或声子区分开来。我们讨论了将我们的结果推广到具有间隙和无间隙自旋相关器的各种 QSL。
消费级神经技术产品已经问世几十年了。这些产品中的大多数都基于脑电图 (EEG),而脑电图 (EEG) 是一项对噪声敏感的技术。另一种选择是功能性近红外光谱 (fNIRS),这是一种不断发展的神经成像技术,能够实时测量大脑的血流动力学活动。FNIRS 已成功通过功能性磁共振成像 (fMRI) 验证。最近,瑞典公司 Mendi 推出了一款微型无线消费级 fNIRS。本研究旨在比较 Mendi fNIRS 与成熟的实验室 fNIRS 设备对大脑活动的测量结果。19 名参与者(年龄 18-53 岁)进行了两次 Stroop 测试,同时测量了额极(布罗德曼 10 区)的氧合情况。首先,在实验室环境中使用 Biopac 的 fNIRS 设备进行测试,几周后,在家庭环境中使用 Mendi 设备重复该测试。对数据的初步分析显示,两种设备的测量结果具有良好的一致性。在群体层面,相关性为 0.81。这些中期结果需要通过更可靠的分析和后续研究来证实,但 Mendi 设备有望在群体层面提供有效的大脑活动测量,并且该设备很可能用于实验室外的研究。
上下文。大多数巨星位于二进制或多个恒星系统中。与单颗恒星相比,这些物体基于模型大气对定量分析提出了其他挑战。特别是目前几乎没有有关此类系统化学组成的信息。目标。四个恒星系统HD 37061的成员充满了猎户座中H II区域43的兴奋。首次得出所有可在光谱中可追踪的线的元素的精确和精确的丰度。方法。采用了与A tLAS 12代码与非LTE线形成计算相结合的杂种非本地热力学平衡(非LTE)方法。分析了单个恒星的大气参数和元素丰度的高分辨率复合谱。基本的恒星参数是基于恒星进化轨迹得出的,并表征了星际红色。结果。我们确定了HD 37061系统中三个恒星的基本参数和化学丰度。系统中的第四个和最微弱的恒星由于其快速旋转而没有显示出不同的光谱特征。但是,该恒星对连续体具有明显的影响。单个恒星的派生元素丰度和确定的年龄相互一致,并且丰度与宇宙丰度标准相一致。我们发现光谱距离与Gaia数据释放3个视差距离之间有着极好的一致性。
拉曼光谱法(RS)越来越多地应用于医疗领域,以区分肿瘤与正常组织,最近的进步使其在神经外科手术中使用。本评论探讨了RS作为脑神经胶质瘤的诊断和手术辅助,详细介绍了其各种方式和应用。通过包括PubMed,Google Scholar和Elibrary在内的数据库中的全面搜索,筛选了300多个参考文献,从而产生了74篇符合纳入标准的文章。关键发现揭示了RS在神经肿瘤学上的潜力,用于检查天然活检标本,冷冻和石蜡包含的组织以及体液以及进行术中评估。rs提供了鉴定神经胶质瘤,将其与健康脑组织区分开的希望,并在切除过程中建立精确的肿瘤边界。
摘要:发现原子薄层的材料(例如石墨烯和过渡金属二分法生化剂)在二维中揭示了对新型基本物理和设备应用的独特探索。表征它们的晶体对称性和随后的电子性能是重要的,即实现这些降低的尺寸系统的全部潜力,从根本上讲,这从根本上决定了拓扑,手性和丰富的界面物理学。第二次谐波生成(SHG)是一种非线性光学效应,对晶体对称性和电子结构敏感,这被证明是捕获本质物理学的最强大但最简单的技术之一。另一方面,分层材料的2D性质具有多种外部刺激的物理性能,可以使其具有大量的可调性,这又为开发2D非线性光电应用程序铺平了道路。在这篇综述中,我们概述了使用第二次谐波生成光谱和显微镜检查的最新努力,以探测晶格结构和偶极性金属二甲硅烷和极性材料中的晶格结构和偶极极化。此外,涵盖了用于控制SHG的多种外部刺激,作为潜在的光电设备。我们以基于SHG光谱法的新兴磁磁和拓扑材料的探索方向的未来探索方向进行了结论。
在现代世界中,口腔的各种炎症性疾病已广泛,特别是牙周炎[1,2]。牙周炎和植入周围炎的主要原因是口腔微生物的组织感染。病理过程中已知的潜在参与者之一是链球菌,在几乎100%的病例中,它们在牙周口袋中被检测到[3-6]。同时,即使使用现代方法,链球菌仍然是识别微生物的最困难之一。当前,一种积极使用的物理方法来诊断包括链球菌在内的微生物,是基质辅助的激光解吸/电离时间 - 质谱质谱法(MALDI-TOFMS)。没有任何有关微生物识别的新技术,没有问题,而Maldi Tofms也是如此。是在具有基因型/蛋白质相似性的那些微型机构中无法进行准确的分歧,并且在数据库中没有可靠的数据[7]。在这方面,紧急任务是检测链球菌的物种鉴定。作为识别链球菌的替代方法,可以使用在生物医学实践中广泛应用的拉曼光谱法(RS)的方法[8]。rs允许分析分子的振动模式,并可以区分相似的分子,这使人们希望解决鉴定紧密相关的细菌物种的问题。鉴于链球菌作为各种局部疾病的致病药物的作用越来越大,需要在此方向上进行进一步的研究。以前,其他作者进行了类似的研究,但它集中在肺炎球菌的物种鉴定上,作为广义感染(肺炎和脑膜炎)的主要病因[9]。该研究的目的是对三种密切相关的链球菌链球菌,口腔链球菌和肺炎链球菌肺炎链球菌的菌株进行频谱研究,并使用拉曼光谱法对周期性诊断的细菌菌株进行快速评估。
执行Attosond-Pump Attosent-probe光谱(APAPS)的能力是超快科学的长期目标。第一次开创性的实验证明了APAP的可行性,但重复率较低(10至120 Hz),并且现有设置的大量足迹迄今妨碍了对APAP的广泛利用。在这里,我们使用1 kHz的商业激光系统,在空心核心纤维中直接压缩后进行了两种座椅,以及紧凑的高谐波生成(HHG)设置。后者可以通过使用过量的HHG几何形状并利用HHG培养基中驱动激光器的瞬时蓝光来实现强烈的极端脉络膜(XUV)脉冲的产生。产生了近距离的脉冲,如一色和两色Xuv-Pump Xuv-probe实验所证明的那样。我们的概念允许在许多实验室的极短时间内进行选择性抽水和探测,并允许对其他泵种技术无法访问的基本过程进行调查。
图3。对前后语音获得的血流动力学反应。从刺激发作中,在-5至35s之间绘制了婴儿和HBB变化的时间疗程。(a)显示了5个月大的婴儿的结果,(b)表示10个月大的婴儿的结果。左图显示左半球的结果,右面板对应于右半球。使用基于群集的置换方法,在5个月大的和10个月大的婴儿中鉴定出簇对前后语音的显着反应(p <.05)。HBO:含氧血红蛋白,HBB:脱氧血红蛋白,HB:血红蛋白。fw:前言,BW:向后的语音。
摘要。我们使用低成本,紧凑的拉曼光谱仪报告快速鉴定单个细菌。我们证明了60 s的程序足以在600至3300 cm-1的范围内获取全面的拉曼光谱。这次包括将小细菌聚集体的定位,单个个体的比对以及自发的拉曼散射信号收集。小细菌聚集体的快速定位,通常由小于十二个个体组成,是通过在24 mm 2的大型视野上进行镜头成像来实现的。无镜头图像还允许单个细菌与探测束的精确比对,而无需标准显微镜。在532 nm处的34兆瓦连续激光器的拉曼散射光被喂入定制光谱仪(原型龙卷风光谱系统)。由于该光谱仪的高光吞吐量,可接受的积分时间低至10 s。我们在七个细菌物种上总共记录了1200个光谱。使用此数据库和优化的预处理,获得了约90%的分类速率。我们的拉曼光谱仪的速度和敏感性为高通量和无损的实时细菌鉴定测定法铺平了道路。这种紧凑和低成本的技术可以使生物医学,临床诊断和环境应用受益。©2014光学仪器工程师协会(SPIE)[doi:10.1117/1.jbo.19.11.111610]