脑机接口 (BCI) 拼写器允许严重运动障碍的患者使用他们的大脑活动进行交流,而无需肌肉活动。广泛研究的基于 P300 的 BCI 拼写器的不同视觉配置已在健康和运动障碍用户中进行了评估。但拼写器大小(以厘米为单位)仅针对健康受试者进行了评估。我们认为拼写器大小可能会限制一些头部和眼球运动受限的严重运动障碍患者。针对七名患有肌萎缩侧索硬化症 (ALS) 的患者和一名患有杜氏肌营养不良症 (DMD) 的参与者评估了三种拼写器尺寸的可用性。这是首次对严重运动障碍参与者进行拼写器尺寸可用性评估。中等拼写器的有效性(在线结果中)和效率(工作量测试中)明显更好。中等尺寸拼写器的满意度明显最高,小尺寸拼写器的满意度最低。这些结果与之前在健康受试者中描述的发现相一致。总之,在设计拼写器范例时应考虑拼写器的大小,尤其是对于运动障碍人士,因为它可能会影响他们在控制 BCI 拼写器时的表现和用户体验。
摘要 - 脑部计算机接口(BCI)允许其用户仅使用大脑活动与计算机或其他机器进行交互。运动障碍者是这项技术的潜在用户,因为它可以使他们在不使用周围神经的情况下与周围环境互动,从而帮助他们恢复失去的自主权。P300拼写器是最受欢迎的BCI应用程序之一。其性能取决于其分类器识别和区分p300电位与脑电图(EEG)信号的能力。为了使分类器正确执行此操作,有必要使用平衡的数据集训练它。但是,由于p300通常是用奇数范式引起的,因此只能获得不平衡的分布。本文在P300 EEG信号上采用了一种基于自组织图(SOM)的采样下采样方法,希望提高分类器的准确性。通过从健康受试者和中风后受害者获得的数据集测试了两个分类模型,一个深层喂养网络(DFN)和深信仰网络(DBN)。我们将结果与以前的作品进行了比较,并观察到我们最关键的主题的分类准确性增加了7%。对于健康和中风的受试者,DBN的最高分类准确性为95.53%和94.93%,而DFN为96.25%和93.75%。索引术语 - 脑计算机界面,神经网络,自组织图,击球后,脑电图
脑机接口 (BCI) 是一种允许人们绕过周围神经系统 (PNS) 的自然神经肌肉和激素输出与环境互动的系统。这些接口记录用户的大脑活动并将其转换为外部设备的控制命令,从而为 PNS 提供额外的人工输出。在此框架中,基于 P300 事件相关电位 (ERP) 的 BCI 已被证明特别成功且稳定,ERP 代表特定事件或刺激后从大脑记录的电反应。通过分类算法确定 EEG 特征中是否存在 P300 诱发电位。线性分类器(例如逐步线性判别分析 (SWLDA) 和支持向量机 (SVM))是 ERP 分类中最常用的判别算法。由于 EEG 信号的信噪比较低,因此需要执行多个刺激序列(即迭代),然后取平均值,然后对信号进行分类。然而,虽然增加迭代次数可以提高信噪比 (SNR),但也会减慢该过程。在早期的研究中,迭代次数是固定的(不停止),但最近,文献中提出了几种提前停止策略,以便在满足某个标准时动态中断刺激序列,以提高通信速率。在
摘要 在本文中,我们提出了一种基于 P300 电位的拼写器分类器训练新方法。该方法基于引导,是一种已知的生成新样本的策略,但在神经科学中很少使用。该研究首先展示了传统方法中分类任务(检测 P300 和非 P300 类别)的性能可能不是最优的。然后,提出了一种从训练数据中抽取新样本的新方法。使用单个 P300 和非 P300 样本的平衡子组重新训练每个分类器。使用 16 个脑电图通道从 14 名健康受试者收集数据。这些数据经过带通滤波和抽取。随后,使用传统方法训练四个线性分类器,然后使用所提出的方法,每个类别有 1000、2000 和 3000 个样本。结果表明,使用所提方法,判别分类器的准确率和判别能力有所提高,同时保持了训练数据和测试数据之间的相同统计特性。相比之下,对于生成分类器,结果没有显著差异。因此,强烈建议使用所提方法训练基于拼写的 P300 电位的判别分类器。
摘要在本文中,我们提出了一种基于P300电位的拼写器中训练分类器的新方法。基于自举的方法是生成新样本的已知策略,但很少在神经科学中使用。该研究首先证明了分类任务的性能(检测P300和非P300类)如何在传统方法中是最佳的。然后,提出了一种从培训数据中获取新样本的新方法。使用单个P300和非P300样品的平衡子组对每个分类器进行重新训练。使用16个脑电图通道从14个健康受试者中收集数据。将这些被过滤在带通中并破坏。随后,使用传统方法随后训练了四个线性分类器,其拟议中的一个分类器,每班有1000、2000和3000个样本。结果表明,使用建议的方法对判别性分类器的准确性和歧视能力有所提高,并在培训数据和测试数据之间保持相同的统计属性。相比之下,对于生成分类器,结果没有显着差异。因此,强烈建议使用拟议的方法来训练基于法术的P300电位中的判别分类器。
摘要:稳态视觉诱发电位 (SSVEP) 因其稳健性、大量命令、高分类准确率和信息传输率 (ITR) 等优点,被广泛应用于开发脑机接口 (BCI)。然而,同时使用多个闪烁刺激往往会导致用户感到非常不适、疲倦、烦恼和疲劳。在这里,我们建议使用脑电图 (EEG) 和基于视频的眼动追踪来设计一种刺激响应混合拼写器,以提高用户在面对大量同时闪烁的刺激时的舒适度。有趣的是,基于典型相关分析 (CCA) 的框架可用于识别闪烁信号持续时间为 1 秒的目标频率。我们提出的 BCI 拼写器仅使用六个频率来对 48 个目标进行分类,从而大大提高了 ITR,而基本的 SSVEP BCI 拼写器使用的频率数量与目标数量相同。使用此拼写器,我们在提示拼写任务中获得了 90.35 ± 3.597% 的平均分类准确率,平均 ITR 为 184.06 ± 12.761 比特/分钟,在自由拼写任务中获得了 190.73 ± 17.849 比特/分钟。因此,我们提出的拼写器在目标分类、分类准确率和 ITR 方面优于其他拼写器,同时产生的疲劳、烦人、疲倦和不适感更少。我们提出的混合眼动追踪和基于 SSVEP BCI 的系统最终将实现真正的高速通信通道。
• 说出单词。然后写下来,说出每个字母(要热情且富有表现力)W - O - R - D • 跳过一行,说出并再次写下 — 减去最后一个字母。说出最后一个字母,但不要写出来。W - O - R - ____ • 跳过一行,说出并再次写下 — 减去最后两个字母。说出它们,但不要写出来。W - O - ___ ____ • 重复此操作,直到只写一个字母。 • 回到顶部。阅读单词,然后大声拼写出来。 • 将页面折起来,这样您就看不到整个单词了。说出单词,拼写它,然后添加最后一个字母。 • 再次将页面折回。说出单词,拼写它,然后添加最后两个字母。 • 继续,直到拼写出整个单词。 • 回去检查 — 确保您没有遗漏字母。按音节反向链接
