摘要 - 脑部计算机界面(BCI)是人脑和计算机之间通信的常见设备。本文研究了使用3D界面为BCI机器使用的效率。为此,已修改了P300拼写器(使用户能够使用脑电波在屏幕上拼写字符的BCI设备)已进行了修改。P300拼写器的经典虚拟键盘被3D立体图像替换,从而增强了设备的人体工程学特征。此外,3D接口上的范围范式可以以三种方式影响设备的孔隙:准确性,速度和容量。本文提出了两种称为天然3D和平行2D界面的不同浮雕范式,并研究了它们在提到的三种措施方面的效果。前者在3D空间中的平面,后者包括不同3D深度的平行键盘的灰烬。提出了这些效果的理论分析。通过从实际受试者获得的实验数据来验证结果,并与经典的2D界面进行了比较。两个提出的键盘都提高了设备的速度,而平行2D的总性能比天然3D更好。
摘要 —P300 拼写器是脑机接口研究中广泛使用的应用。事实证明,P300 拼写器可以作为神经反馈训练工具,通过逐渐增加拼写任务的难度来增强注意力。这种自适应方法使用户更难正确拼写单词,鼓励他们提高注意力以抵消日益增加的难度。因此,自适应 P300 拼写器有可能成为患有 ADHD 的儿童、患有痴呆症的老年患者的治疗选择,并成为健康成年人的认知增强工具。但是,训练长度(包括设置时间)需要很快,以确保用户接受。本研究调查了使用和不使用 xDAWN 空间滤波器时不同电极子集对 P300 拼写器性能的影响。结果表明,xDAWN 空间滤波器可以提高许多电极的性能,但会降低少于八个电极的结果。对于近乎完美的性能至关重要且有许多电极可用的场景,建议使用一组带有 xDAWN 空间滤波器的 16 个电极。对于需要考虑成本和设置时间,且可以接受较低性能的情况,使用不带空间滤波器的六个电极就足够了。
大脑计算机界面(BCI)连接人类和机器。作为BCI的应用,BCI Speller(用于与物理残疾的文本输入接口)已得到广泛研究。BCI拼写器所需的性能是大量的同时输入和高正确的响应率,类似于PC键盘[1]。在我们先前的研究中,我们研究了具有50个输入的稳态视觉引起的电势(SSVEP)–BCI拼写器[2]。如果可以同时输入50个,则可以分配所有日本的Hiragana和标点符号。具体来说,将不同的眨眼频率分配给50个屏幕字符,并从EEG中检测到响应的差异。但是,脑电图检测到的频率范围有一个限制。此外,频划分越少,检测就越困难。因此,必须改进信号处理算法。
脑机接口 (BCI) 连接人与机器。作为 BCI 的一种应用,BCI 拼写器(一种用于与肢体残疾人士交流的文本输入接口)得到了广泛的研究。BCI 拼写器的性能要求是大量同时输入和高正确响应率,类似于 PC 键盘 [1]。在我们之前的研究中,我们研究了具有 50 个输入的稳态视觉诱发电位 (SSVEP)-BCI 拼写器 [2]。如果可以同时输入 50 个,则可以分配所有日语平假名和标点符号。具体而言,为 50 个屏幕字符分配不同的眨眼频率,并从 EEG 中检测到响应的差异。然而,EEG 可以检测到的频率范围是有限的。此外,频率划分越细,检测就越困难。因此,必须改进信号处理算法。
摘要 — 目标:用脑电图 (EEG) 测量的稳态视觉诱发电位 (SSVEP) 在脑机接口 (BCI) 拼写器中产生不错的信息传输速率 (ITR)。然而,目前文献中高性能的 SSVEP BCI 拼写器需要对每个新用户进行初始冗长而累人的用户特定训练以适应系统,包括使用 EEG 实验收集数据、算法训练和校准(所有这些都在实际使用系统之前)。这阻碍了 BCI 的广泛使用。为了确保实用性,我们提出了一种基于深度神经网络 (DNN) 集合的全新目标识别方法,该方法不需要任何类型的用户特定训练。方法:我们利用先前进行的 EEG 实验的参与者的现有文献数据集,首先训练一个全局目标识别器 DNN,然后针对每个参与者进行微调。我们将这组经过微调的 DNN 集合转移到新的用户实例,根据参与者与新用户的统计相似性确定 k 个最具代表性的 DNN,并通过集合预测的加权组合来预测目标字符。结果:在两个大规模基准和 BETA 数据集上,我们的方法实现了令人印象深刻的 155.51 比特/分钟和 114.64 比特/分钟 ITR。代码可用于重现性:https://github.com/osmanberke/Ensemble-of-DNNs 结论:在两个数据集上,对于所有刺激持续时间在 [0.2-1.0] 秒内的情况,所提出的方法都明显优于所有最先进的替代方案。意义:我们的 Ensemble-DNN 方法有可能促进 BCI 拼写器在日常生活中的实际广泛部署,因为我们提供最高性能,同时允许立即使用系统而无需任何用户特定的训练。索引词 — 脑机接口、BCI、EEG、SSVEP、集成、深度学习、迁移学习
摘要 脑机接口 (BCI) 是一种允许人们绕过周围神经系统 (PNS) 的自然神经肌肉和激素输出与环境互动的系统。这些接口记录用户的大脑活动并将其转换为外部设备的控制命令,从而为 PNS 提供额外的人工输出。在这一框架中,基于 P300 事件相关电位 (ERP) 的 BCI 已被证明特别成功和强大,ERP 表示特定事件或刺激后从大脑记录下来的电反应。通过分类算法确定 EEG 特征中是否存在 P300 诱发电位。线性分类器(例如逐步线性判别分析和支持向量机 (SVM))是 ERP 分类中最常用的判别算法。由于 EEG 信号的信噪比较低,因此在对信号进行分类之前,需要执行多个刺激序列(又称迭代)并取平均值。然而,虽然增加迭代次数可以提高信噪比,但也会减慢该过程。在早期的研究中,迭代次数是固定的(无停止环境),但最近文献中提出了几种提前停止策略,以便在满足某个标准时动态中断刺激序列,以提高通信速率。在这项工作中,我们探索了如何通过结合优化和机器学习来提高基于 P300 的 BCI 中的分类性能。首先,我们提出了一个新的决策函数,旨在提高无停止和提前停止环境中的分类性能(准确度和信息传输速率)。然后,我们提出了一个新的 SVM 训练问题,旨在促进目标检测过程。我们的方法在几个公开可用的数据集上被证明是有效的。
大脑计算机界面(BCI)系统为严重运动残疾患者提供了替代通信通道,可以使用无肌肉运动与环境互动。近年来,与最经常研究的基于BCI的拼写范式相比,对非目光依赖的脑部计算机界面范式的研究的重要性一直在增加。在RCP范式下已经验证了用于通信目的的几种视觉修改尚未在最扩展的非目光依赖的快速串行视觉呈现(RSVP)范式下进行验证。因此,在本研究中,根据RSVP评估了三组不同的刺激,并具有以下交流特征:白色字母(WL),著名面部(FF),中性图片(NP)。11个健康受试者参加了该实验,其中受试者必须经历校准阶段,在线阶段以及最终的主观问卷完成阶段。结果表明,FF和NP刺激在校准和在线阶段促进了更好的性能,在FF范式中稍好。关于主观问卷,与WL刺激相反,参与者再次首选FF和NP,但这次NP刺激得分略高。这些发现表明,与最常用的基于字母的刺激相比,将FF和NP用于基于RSVP的拼写器可能是有益的,可以提高信息传输速率,并且可以代表具有改变眼运动功能的个人的有希望的通信系统。
脑机接口 (BCI) 拼写器允许严重运动障碍的患者使用他们的大脑活动进行交流,而无需肌肉活动。广泛研究的基于 P300 的 BCI 拼写器的不同视觉配置已在健康和运动障碍用户中进行了评估。但拼写器大小(以厘米为单位)仅针对健康受试者进行了评估。我们认为拼写器大小可能会限制一些头部和眼球运动受限的严重运动障碍患者。针对七名患有肌萎缩侧索硬化症 (ALS) 的患者和一名患有杜氏肌营养不良症 (DMD) 的参与者评估了三种拼写器尺寸的可用性。这是首次对严重运动障碍参与者进行拼写器尺寸可用性评估。中等拼写器的有效性(在线结果中)和效率(工作量测试中)明显更好。中等尺寸拼写器的满意度明显最高,小尺寸拼写器的满意度最低。这些结果与之前在健康受试者中描述的发现相一致。总之,在设计拼写器范例时应考虑拼写器的大小,尤其是对于运动障碍人士,因为它可能会影响他们在控制 BCI 拼写器时的表现和用户体验。
摘要 - 脑部计算机接口(BCI)允许其用户仅使用大脑活动与计算机或其他机器进行交互。运动障碍者是这项技术的潜在用户,因为它可以使他们在不使用周围神经的情况下与周围环境互动,从而帮助他们恢复失去的自主权。P300拼写器是最受欢迎的BCI应用程序之一。其性能取决于其分类器识别和区分p300电位与脑电图(EEG)信号的能力。为了使分类器正确执行此操作,有必要使用平衡的数据集训练它。但是,由于p300通常是用奇数范式引起的,因此只能获得不平衡的分布。本文在P300 EEG信号上采用了一种基于自组织图(SOM)的采样下采样方法,希望提高分类器的准确性。通过从健康受试者和中风后受害者获得的数据集测试了两个分类模型,一个深层喂养网络(DFN)和深信仰网络(DBN)。我们将结果与以前的作品进行了比较,并观察到我们最关键的主题的分类准确性增加了7%。对于健康和中风的受试者,DBN的最高分类准确性为95.53%和94.93%,而DFN为96.25%和93.75%。索引术语 - 脑计算机界面,神经网络,自组织图,击球后,脑电图
脑机接口 (BCI) 是一种允许人们绕过周围神经系统 (PNS) 的自然神经肌肉和激素输出与环境互动的系统。这些接口记录用户的大脑活动并将其转换为外部设备的控制命令,从而为 PNS 提供额外的人工输出。在此框架中,基于 P300 事件相关电位 (ERP) 的 BCI 已被证明特别成功且稳定,ERP 代表特定事件或刺激后从大脑记录的电反应。通过分类算法确定 EEG 特征中是否存在 P300 诱发电位。线性分类器(例如逐步线性判别分析 (SWLDA) 和支持向量机 (SVM))是 ERP 分类中最常用的判别算法。由于 EEG 信号的信噪比较低,因此需要执行多个刺激序列(即迭代),然后取平均值,然后对信号进行分类。然而,虽然增加迭代次数可以提高信噪比 (SNR),但也会减慢该过程。在早期的研究中,迭代次数是固定的(不停止),但最近,文献中提出了几种提前停止策略,以便在满足某个标准时动态中断刺激序列,以提高通信速率。在