我们采用多国多部门新凯恩斯主义模型来分析推动大流行时代通货膨胀的因素。该模型结合了部门特定冲击和总体冲击,这些冲击通过全球贸易和生产网络传播并产生供需失衡,从而导致通货膨胀和溢出效应。基线定量分析匹配了美国、欧元区、中国和俄罗斯等样本国家的总体和部门价格和工资变化。我们的研究结果表明,供应链瓶颈引发了 2020 年的通货膨胀,随后 2021 年至 2022 年总需求冲击推动价格飙升,能源价格上涨加剧了这一情况。JEL 分类:E2、E3、E6、F1、F4 关键词:通货膨胀、国际溢出效应、全球生产网络 _________________ Giovanni:纽约联邦储备银行,CEPR(电子邮件:julian.digiovanni@ny.frb.org)。Silva:波士顿联邦储备银行(电子邮件:asilvub@gmail.com)。 Kalemli-Özcan:布朗大学、CEPR、NBER(电子邮件:sebnemkalemli-ozcan@brown.edu)。Yıldırım:哈佛大学、Koç 大学(电子邮件:muhammed_yildirim@hks.harvard.edu)。作者感谢讨论者 Gianluca Benigno、Mishel Ghassibe、Andrea Raffo、John Romalis、2023 年意大利银行-欧洲央行-世界银行“全球经济中的贸易、价值链和金融联系”研讨会的参与者、《国际经济学杂志》国际经济学暑期学校(2023 年版)、澳大利亚储备银行年会(2023 年)和第 8 届 NBU-NBP 年度研究会议(2024 年)的深刻评论。本文介绍了初步研究结果,并分发给经济学家和其他感兴趣的读者,仅用于激发讨论和征求评论。本文表达的观点为作者的观点,并不一定反映纽约联邦储备银行或联邦储备系统的立场。任何错误或遗漏均由作者负责。如需查看作者的披露声明,请访问 https://www.newyorkfed.org/research/staff_reports/sr1080.html。
事件相机具有高时间分辨率、高动态范围、低功耗和高像素带宽等特点,为特殊环境中的物体检测提供了独特的功能。尽管有这些优势,事件数据固有的稀疏性和异步性对现有的物体检测算法提出了挑战。脉冲神经网络 (SNN) 受到人脑编码和处理信息方式的启发,为这些困难提供了潜在的解决方案。然而,在当前的实现中,它们在使用事件相机进行物体检测方面的性能受到限制。在本文中,我们提出了脉冲融合物体检测器 (SFOD),一种基于 SNN 的简单有效的物体检测方法。具体而言,我们设计了一个脉冲融合模块,首次实现了应用于事件相机的 SNN 中不同尺度特征图的融合。此外,通过整合我们在 NCAR 数据集上对主干网络进行预训练期间进行的分析和实验,我们深入研究了脉冲解码策略和损失函数对模型性能的影响。从而,我们建立了基于 SNN 的当前最佳分类结果,在 NCAR 数据集上实现了 93.7% 的准确率。在 GEN1 检测数据集上的实验结果表明,SFOD 实现了 32.1% 的当前最佳 mAP,优于现有的基于 SNN 的方法。我们的研究不仅强调了 SNN 在事件摄像机物体检测中的潜力,而且推动了 SNN 的发展。代码可在 https://github.com/yimeng-fan/SFOD 获得。
ethz.ch › edu › slides › Info2-ITET-11 PDF 2023年3月29日 — 2023年3月29日 了解飞机的可靠性有时并不比计算机高!... 政府在当时所谓的“人体工程学”或... 方面存在问题
执行摘要 2 背景 3 评估需求 8 优先人群: 8 优先人群:老年人(50 岁以上) 8 优先人群:需要紧急住房的人 9 优先人群:需要清醒康复住房的人 9 优先人群:失去照料的青少年 9 优先人群:土著妇女、女孩和 2-Spirit (IWG2S) 10 住房愿景:社区咨询与研究 10 建设社区 12 创造 YIMBY 环境 12 合作伙伴关系 12 开发和利用可持续方法 13 生活体验咨询委员会 (LEAC) 13 住房咨询委员会 (HAC) 13 物业管理 13 结束摘要 15 词汇表 16 住房优先最佳实践 17 住房类型 17
– Qilimanjaro Quantum Tech | qilimanjaro.tech/ BSC | Spinoff Qilimanjaro 是一家全栈量子计算公司,旨在通过遵循独特的战略最大限度地发挥当前的技术能力,在更短的时间内提供实用的量子优势。
1 机器人、人工智能与实时系统,慕尼黑工业大学信息学院,德国慕尼黑,2 于利希超级计算中心 (JSC) 神经科学模拟与数据实验室,高级模拟研究所,JARA,于利希研究中心有限公司,德国于利希,3 瑞士国家超级计算中心 (CSCS),苏黎世联邦理工学院,瑞士卢加诺,4 神经计算单元,冲绳科学技术研究生院,日本冲绳,5 机器人与人工智能卓越系,生物机器人研究所,Scuola Superiore Sant'Anna,意大利蓬泰代拉,6 计算机架构与技术系,格拉纳达大学信息与通信技术研究中心,西班牙格拉纳达,7 图像处理研究团队,日本理化学研究所先进光子学中心,和光,8 计算工程应用单元,信息系统与网络安全总部,理化学研究所,日本和光市、9 日本东京电气通信大学信息与工程研究生院、10 德国于利希研究中心、神经科学与医学研究所 (INM-6)、高级模拟研究所 (IAS-6)、JARA BRAIN 研究所 I、11 德国亚琛工业大学计算机科学 3-软件工程、12 日本神户理化学研究所计算科学中心
©喜马拉雅研究中心,希夫·纳达尔(Shiv Nadar)关于作者的杰出学会:Diki Sherpa是Flame University知识替代中心的博士后研究研究员。她拥有香港中文大学的历史博士学位。她的广泛研究兴趣在于现代的南亚和东亚历史,特别关注互连和联系。作者要感谢这位匿名审稿人的宝贵反馈和有见地的建议。将此出版物列为:Sherpa,Diki .2024。“环境转变和减少农业可持续性:Lahaul-Spiti地区的审查”。喜马拉雅研究的卓越中心,希夫·纳达(Shiv Nadar)杰出学会。问题简介。第六号。6月。1-7。
其在光伏应用领域的研究引起了人们的兴趣,因为它们的量子效率已经达到了 25.5% [1],而且还扩展到辐射传感 [2,3] 和各种光电设备。[4–7] 达到高质量 MAPbI 3 、FAPbI 3 和 CsPbI 3 单晶的极限,与 MA、FA 和铯 (Cs) 阳离子混合物的组合结构成为最先进的钙钛矿材料,提高了量子效率并将结构稳定性从几天延长到几个月。[2,8–10] 由于基本物理性质接近其母结构,因此所提出的 FA 0.9 Cs 0.1 PbI 2.8 Br 0.2 可作为铅卤化物钙钛矿类的有效模型系统。与传统的 III-V 和 II-VI 半导体相比,钙钛矿在某种意义上具有反转的能带结构:价带 (VB) 态由 s 轨道形成,而导带 (CB) 态由 p 轨道贡献。强自旋轨道耦合,特别是 Rashba 效应 [11–14] 也会交换电子和空穴的自旋特性。[15,16] 因此,与晶格核的超精细相互作用由空穴而不是电子主导。钙钛矿能带结构为光学跃迁提供了清晰的极化选择规则,因此结合
Ishaac Cands 1,2,4,Rhedeaaugif 5,Madeleine Commerc 5,Jibrand Khaliq 5,Islam ShyhaIshaac Cands 1,2,4,Rhedeaaugif 5,Madeleine Commerc 5,Jibrand Khaliq 5,Islam Shyha