在COVID-19大流行的当前阶段有许多因素,这表明需要新建模思想。实际上,大多数传统的传统疾病模型并不能充分解决逐渐减弱的免疫力,因为新出现的变种已经能够通过先前的不同菌株的病毒感染或通过接种疫苗对当前变体无效。此外,在报告后不再是违约的大流行景观中,不可能在人群层面拥有可靠的定量数据。我们对COVID-19的贡献是沿年龄分配的人口框架的一个简单的数学预测模型,可以考虑以透明且易于控制的方式考虑下降的免疫力。数值模拟表明,在静态条件下,该模型产生的周期性解决方案在质量上与报道的数据相似,而免疫力逐渐减弱。来自数学模型的证据表明,免疫力动力学是感染峰值复发的主要因素,但是,由于病原体或人类行为的突变,传播速率的不规则扰动可能导致复发峰值的抑制,并且连续峰之间的不规则时间间隔不规则。尖峰幅度对传输速率和疫苗接种策略敏感,也对描述衰减免疫力的profe态度的偏差,这表明在对未来爆发进行预测时应考虑这些因素。
中等雷诺数下的薄翼型动态失速通常与靠近前缘的小层流分离气泡的突然破裂有关。鉴于层流分离气泡对外部扰动的强烈敏感性,使用直接数值模拟研究了在不同水平的低振幅自由流扰动下 NACA0009 翼型截面上动态失速的发生。对于前缘湍流强度 Tu = 0 .02%,流动与文献中的干净流入模拟几乎没有区别。对于 Tu = 0 .05%,发现破裂过程不太平稳,并且在动态失速涡流形成之前观察到层流分离气泡中强烈的相干涡流脱落。非线性模拟与瞬态线性稳定性分析相辅相成,该分析使用最优时间相关 (OTD) 框架的空间局部公式对破裂分离泡中层流剪切层的时间相关演化进行分析,其中非线性轨迹瞬时切线空间中最不稳定的部分随时间的变化被跟踪。得到的模式揭示了两种状态之间的间歇性切换。分离剪切层上的开尔文-亥姆霍兹滚转快速增长,分离泡过渡部分的二次不稳定性复杂化。后者的出现与线性子空间内瞬时增长率的大幅飙升以及非线性基流的更快转变有关。这些强烈的增长峰值与随后从层流分离泡中脱落的能量涡流密切相关。
摘要 - 尽管未来电网的数字化提供了几种协调激励措施,信息和通信技术(ICT)的可靠性和安全性却阻碍了其整体绩效。在本文中,我们通过统一的功率和信息来介绍一种新颖的插座尖峰谈话,作为使用SPIKES协调对微电网控制的数据归一化的手段。这种网格边缘技术允许每个分布式能源资源(DER)通过使用沿着领带线的功率流相互交互来独立执行二级控制理念。受到计算神经科学领域的启发,Spike Talk基本上基于我们大脑中的信息传递理论的细粒平行性,尤其是当神经元(建模为DERS)通过突触(模型为Tie Line)传输信息(从每个DER上测量的功率流)发射信息(从每个DER测量)。Spike Talk不仅可以简化并通过驳回ICT层来解决网络物理建筑操作的当前瓶颈,而且还提供了基础设施,计算和建模的内在运营和成本效益的机会。因此,本文提供了关键概念和设计理论的教学插图。由于我们专注于本文中的微电网的协调控制,因此研究了一些负责将相关局部测量值转换为尖峰的神经编码方案的信号准确性和系统性能。
保险丝选择似乎很简单,你只需选择一个额定电流略高于最坏情况系统工作电流的保险丝即可。不幸的是,事情没那么简单。需要考虑工作电流和应用温度的降额问题。开机和其他系统操作(如处理器速度变化或电机启动)会导致电流激增或尖峰,在选择保险丝时也需要考虑这些因素。因此,为你的应用选择合适的保险丝并不像了解系统所消耗的标称电流那么简单。
摘要:镰刀菌疫病(FHB)和镰刀冠腐烂(FCR)由咪唑杀真菌剂的应用管理,如欧洲绿色交易所述,这些杀菌剂将在2030年受到严格限制。在这里,通过遵循循环经济的原理,提出了一种新颖和生态可持续的纳米结构颗粒制剂(NPF)。纤维素纳米晶体(CNC)和抗性淀粉是从高淀粉(HA)面包小麦的麸皮中获得的,并用作载体和赋形剂,而壳聚糖和长石酸则作为抗真菌和抗真菌和INICITOTITRITITITOR主动原理功能化。NPF抑制了分生孢子发芽和菌丝体的生长,并与分生孢子机械相互作用。NPF在易感面包小麦基因型中最佳降低了FHB和FCR症状,同时在植物上具有生物相容性。The expression level of 21 genes involved in the induction of innate immunity was investigated in Sumai3 (FHB resistant) Cadenza (susceptible) and Cadenza SBEIIa (a mutant characterized by high-amylose starch content) and most of them were up-regulated in Cadenza SBEIIa spikes treated with the NPF, indicating that this genotype may possess an interesting genomic background particularly对诱导剂样分子的反应。量化表明NPF控制的FHB扩散,而Cadenza Sbeiia对FCR真菌扩散具有抗性。目前的研究工作强调,NPF是FHB可持续管理的强大武器,而Cadenza Sbeiia的基因组应深入研究,因为对类似Esicor的分子和对FCR真菌差的耐药性特别敏感。
我们所有人都需要葡萄糖来产生能量,我们通过分解我们吃或喝的碳水化合物的身体创造这种能量,这会产生葡萄糖。然后将葡萄糖释放到我们的血液中,并运输到最需要它的身体部位。对于患有糖尿病的患者,他们的身体可能无法有效使用葡萄糖,因此葡萄糖在血液中积聚,导致血糖水平尖峰。我们需要一种称为胰岛素的激素将葡萄糖从我们的血液中移动到我们的细胞中,因此可以用于能量。
摘要 皮层内微刺激 (ICMS) 常用于许多实验和临床范例;然而,它对神经元激活的影响仍未完全了解。为了记录清醒非人类灵长类动物皮层神经元对刺激的反应,我们在通过植入三只恒河猴初级运动皮层 (M1) 的犹他阵列提供单脉冲刺激的同时记录了单个单位活动。输送到单通道的 5 到 50 m A 之间的刺激可靠地引发了整个阵列中记录的神经元尖峰,延迟长达 12 毫秒。ICMS 脉冲还会引发一段长达 150 毫秒的抑制期,通常在初始兴奋反应之后发生。电流幅度越高,引发尖峰的概率就越大,抑制持续时间也越长。在神经元中引发尖峰的可能性取决于自发放电率以及其最近尖峰时间和刺激开始之间的延迟。 2 到 20 Hz 之间的强直重复刺激通常会调节诱发尖峰的概率和抑制的持续时间;高频刺激更有可能改变这两种反应。在逐次试验的基础上,刺激是否诱发尖峰并不影响随后的抑制反应;然而,它们随时间的变化通常是正相关或负相关的。我们的研究结果证明了皮质神经对电刺激反应的复杂动态,在将 ICMS 用于科学和临床应用时需要考虑这些动态。
对太空系的抽象当前研究包括它们在空间碎片上的应用,特别是在Chaser Tug执行的一组操纵下,以更改目标物体的轨道参数。目标可以在其生命的尽头是合作的航天器,也可以是未受控制的物体,例如已停用的卫星,而无需清楚地捕获接口。在后一种情况下,连接拖船和目标的链接可能与靶体惯性轴未对准,从而影响了这两个身体的态度。如果存在刚性链接,则在拉扯操作过程中传输的扭矩可能会克服拖船态度控制系统。在非刚性连接(例如Tethers)的情况下,这个问题显然不那么重要。此外,通过这种连接,追逐者可以在整个解析操作期间保持与目标的安全距离。在另一侧,束缚空间碎片去除操作的初始阶段可能会受到瞬态事件的影响,例如突然的系绳张力尖峰,可能会导致纵向和横向振荡,并且在与目标态度态度动力学共鸣的情况下,可能代表了严重的拖船安全问题。在本文中,建议为Tug提供一个能够执行卷轴和卷轴的链球部署机构,从而使载荷向目标进行平滑载荷并抑制振荡。通过在低摩擦表上使用SpaceCraft Test床进行的代表性测试活动来验证此概念。已制造了部署的原型,并证明了薄铝制胶带系绳的部署和倒带。测试结果包括通过直接测量尖峰和振荡的螺纹粘膜弹性特性的验证以及提出的系统阻尼功能的估计。
摘要:癫痫尖峰是脑电图中互补的信息来源,可以诊断和定位癫痫的起源。但是,不仅对脑电图劳动的视觉检查不仅是耗时,而且耗时且容易出现人为错误,而且还需要长期培训才能获得识别癫痫释放所需的技能水平。因此,采用了计算机辅助方法,目的是节省时间并提高检测和来源定位精度。由于形态相似,可能被混淆为癫痫尖峰的最重要伪影之一是眼睛眨眼。只有少数研究考虑在检测前去除此伪像,并且大多数使用视觉检查或计算机辅助方法需要专家监督。因此,在本文中,开发了一个无监督和基于脑电图的系统,具有嵌入式眼睛眨眼伪影的去除剂,以检测癫痫尖峰。所提出的系统包括三个阶段:眼睛眨眼伪影,特征提取和分类。小波变换均用于移除和特征提取步骤,以及用于分类目的的自适应神经模糊推理系统。使用公开可用的脑电图数据集对所提出的方法进行了验证。与类似的研究相比,结果显示了使用低分辨率EEG使用低分辨率EEG,计算复杂性,最高灵敏度和较小的人类相互作用的低分辨率EEG检测癫痫尖峰的效率。此外,由于癫痫尖峰检测是癫痫源定位的重要组成部分,因此该算法可用于基于脑电图的癫痫病前术前评估。