磁振子学是研究自旋波的物理特性并利用其进行数据处理的科学领域。可扩展至原子尺寸、从 GHz 到 THz 频率范围的操作、非线性和非互易现象的利用、与 CMOS 的兼容性只是磁振子提供的众多优势中的一小部分。尽管磁振子学仍然主要定位于学术领域,但该领域所涵盖的科学和技术挑战范围正在得到广泛研究,许多概念验证原型已经在实验室中实现。本路线图是许多作者共同努力的成果,涵盖了多功能自旋波计算方法、它们的概念构建块以及底层物理现象。特别是,路线图讨论了使用布尔数字数据的计算操作、神经形态计算等非常规方法以及基于磁振子的量子计算的进展。本文由七个大主题部分组成的子节集合组成。每个小节由一位或一组作者准备,并简要描述当前的挑战和研究方向进一步发展的前景。
国家政策/指南印第安纳州没有肯塔基州为脊髓(仅适用于肯塔基州)植入电气刺激器(仅适用于肯塔基州)路易斯安那州植入脊髓的电刺激器(仅适用于路易斯安那州的新泽西州),新泽西州植入了脊髓的脊髓(仅适用于新墨西哥的新墨西哥植入式电气刺激器(仅适用于新墨西哥)的脊髓(仅)用于脊髓的电刺激器(仅适用于北卡罗来纳州),将电刺激器植入脊髓(仅对于俄亥俄州)(仅适用于俄亥俄州)宾夕法尼亚州植入脊髓的电刺激器,用于脊髓(仅宾夕法尼亚州,仅用于宾夕法尼亚州(仅适用于田纳西州)田纳西州的田纳西州植入电气刺激器,用于刺激器的刺激器(仅用于固定的),刺激范围是刺激范围的散文范围(用于覆盖范围)。根据美国食品和药物管理局(FDA)进行标记为适应症,禁忌症,警告和预防措施的某些情况下的以下条件:
1 德国神经退行性疾病中心 DZNE,德国波恩 2 德国波恩大学医院神经内科 3 德国波恩亚琛工业大学神经内科 4 德国于利希研究中心 JARA-脑研究所分子神经科学和神经成像 5 巴西坎皮纳斯神经科学与神经技术研究所 (BRAINN) 6 巴西坎皮纳斯大学神经内科 7 中南大学湘雅医院神经内科,中国长沙 8 中南大学湘雅医院放射科,中国长沙 9 荷兰奈梅亨拉德堡德大学医学中心唐德斯脑、认知与行为研究所神经内科 10 巴黎索邦大学脑研究所、AP-HP、INSERM、CNRS、法国巴黎皮提耶-萨尔佩特里埃大学医院 11 英国伦敦伦敦大学学院皇后广场神经病学研究所临床和运动神经科学系共济失调中心 12 英国伦敦伦敦大学学院医院 NHS 基金会国家神经病学和神经外科医院 13 德国图宾根大学神经退行性疾病系和赫蒂临床脑研究所 14 德国图宾根神经退行性疾病中心 (DZNE) 15 德国图宾根大学医院诊断和介入神经放射学系 16 美国明尼苏达州明尼阿波利斯市明尼苏达大学放射学系磁共振研究中心 17 荷兰格罗宁根大学格罗宁根大学医学中心神经病学系
图 2:Cu(111) 上的电压脉冲。a) 3 . 5 × 3 . 5 nm 2 STM 初始状态的形貌图像,其中暗(HS)邻居(V = 0 . 3 V,I = 5 pA)和 b) 4 . 8 × 4 . 8 nm 2 STM 初始状态的形貌图像,其中亮(LS)邻居(V = 0 . 3 V,I = 5 pA)。黑点表示两种环境中电压脉冲的位置。c)、d) 分别在暗(HS)和亮(LS)邻居的 0.5 V 电压脉冲期间记录的典型 I(t) 轨迹。e)、f) 分别在暗(HS)和亮(LS)邻居的 I(t) 轨迹的每个平台的电流乘以持续时间(I×∆t)的分布。红色圆圈(蓝色方块)对应于从亮(LS)到暗(HS)(暗(HS)到亮(LS))分子的实验事件分布。虚线对应于每个分布的单指数拟合。g)、h) 两种环境下 LS 和 HS 状态在 0.5 V 时的相对势能示意图。
随机幺正动力学是量子力学中描述系统与环境或外部场相互作用演化的一种有效方式。 其最初想法由 Caldeira 和 Leggett 提出,用于研究自旋集合与玻色子浴相互作用的有效动力学 [1]。 由于与未知自由度的相互作用引起的涨落和耗散,此类系统的性质预计会与孤立系统有明显不同。 随机幺正动力学也可用于理论研究量子混沌系统的典型和普遍行为。 因此,这类研究最近重新焕发了活力,特别是在随机幺正电路 [2-9] 以及传统多体系统 [10-16] 的背景下。通过增加随机性,这些系统应该会失去其与特殊性有关的优良性质,例如守恒定律,从而允许出现一般性质。这些包括纠缠的产生 [ 2 , 4 , 17 – 24 ]、信息的扰乱 [ 3 , 6 , 25 , 26 ] 或在收敛到热或非平衡稳态的系统中算符的扩展 [ 5 , 7 , 8 ]。特别是在一些量子随机模型 [ 4 , 14 , 15 , 19 ] 中,有人认为纠缠熵的增长和涨落受 Kardar-Parisi-Zhang (KPZ) 方程 [ 27 – 33 ] 支配。随机共形场论中纠缠增长的大偏差涨落也被证明属于 KPZ 类 [ 34 ]。最近,在超扩散非随机自旋链模型 [ 35 – 38 ] 中,还发现了 KPZ 方程的一些标度特征,这些特征与自旋-自旋关联函数的长期衰减有关。KPZ 类行为在量子多体系统中的普遍性程度仍是一个悬而未决的问题。
(从左到右)在2019年,克里斯汀(Kristine)获得了佐治亚州国家女士年度社会活动奖。第二年,她在佐治亚州参议院的工作中获得了认可。▶克里斯汀于2021年与丈夫约翰·奥祖格(John Ozug)结婚。美丽的仪式在夏威夷举行。▶Kristine在美国MS Association妇女时装秀中帮助计划,执行和模型。这次活动筹集了资金,以改善受社区多发性硬化症影响者的生活。(从左到右,上排)Randie Seigel,Deborah Backus博士,Rebecca Duguid,Rachael Fenich,Heather Breeden,Lynsey Barron,Mandy Peterson-Tice。(底行)克里斯汀·沃纳·奥泽格(Kristine Werner Ozug),琳达·利维(Linda Levy),蒂法尼·普尔(Tiffany Poole),卡伦·卡雷拉(Karen Carera)(克里斯汀(Kristine)的姐姐),琳达·沃纳(Linda Werner)(克里斯汀(Kristine)的妈妈)。
53岁的男人有7年的历史,有缓慢的进步,不对称的肱肌肌营养,左>右。2008 -EMG建议宫颈运动根或前角细胞的病理。Diagnosed with atypical motor neuron disease (“ALS”) 2019 – worsening upper limb weakness and wasting with sensorineural hearing loss MRI showed extensive supra- and infratentorial superficial siderosis (surface of entire spinal cord), and large ventral intraspinal fluid collection with bony spurs at C6-C7 2021- developed parkinsonism, responded to levodopa (felt to be idiopathic PD和无关)2022-症状,检查或成像的变化
SpinChip最初正在开发实验室质量测试,以解决急性护理环境中常见的指示,尤其是心肌梗塞(MI),这是全球发病率和死亡率的主要原因。基于高灵敏性心脏肌钙蛋白分析的当前诊断方法已显着提高了MI诊断的准确性,但由于样本运输和处理时间,仍缺乏快速的周转时间。这通常会导致由于诊断的延迟而导致的急诊室长期待遇并增加医疗费用。“BioMérieux坚信护理点(“ POC”)诊断的重要性,这会使测试更接近患者,从而对患者的护理产生积极影响并降低整体医疗保健费用。SpinChip解决方案是一种改变游戏规则的人,结合了两全其美的最佳:POC系统的易用性和快速时间的时间,具有高敏性实验室测定的精确性和性能。允许医生进行准确而快速的诊断对于心肌梗死的患者至关重要。SpinChip将首先关注建立和利用的心脏标记,例如高灵敏的肌钙蛋白I(HS-TNI),N末端Pro-B型Natriuretic肽(NT-ProBOBNP)和D-Dimer,并将扩展到在急性护理环境中重要的临床区域。菜单中第一个测定的性能HS-TNI在回顾性的临床研究中已通过Apace Cohort 0f 1进行了验证,目前正在一项多中心欧洲临床试验中进行评估。SpinChip期望在2025年底之前提出IVDR下的CE标记申请。
颈脊髓损伤 (SCI) 是一种严重的疾病,可导致神经源性休克,这是一种危及生命的并发症。神经源性休克是指交感神经张力突然受损,导致血管扩张、低血压和心动过缓。这会破坏血流动力学,尤其是微循环中的血流动力学。了解这些变化对于有效治疗至关重要,因为组织灌注和氧气输送会受到影响 [1,2] 。近红外光谱 (NIRS) 是一种非侵入性实时监测组织氧合和微循环状态的工具,使其成为评估神经源性休克 SCI 患者微循环改变的有效方法。微循环系统是指血液通过最小的血管循环,包括小动脉、毛细血管和小静脉。在神经源性休克中,交感神经系统的破坏会导致血管扩张,血液转移到外周组织中,减少中心血容量,并损害微循环血流。这会导致组织灌注不足,从而导致潜在的器官功能障碍和不良后果。监测此类患者的微循环对于及时采取液体复苏和血管加压支持等干预措施至关重要。伴有神经源性休克的 SCI 会导致病情迅速恶化并增加死亡率 [3] 。伴有神经源性休克的 SCI 的病理生理学与组织微循环血流改变、氧合和器官功能障碍有关,常常导致死亡。