(crRNA)或单个诱导RNA(SGRNA)将CAS ector蛋白引导至用于加工的特定核酸序列,例如,结合和/或裂解。在CRISPR - CAS技术之前,其他核酸结合蛋白,例如锌nger核酸酶(ZFN),6个转录激活剂核酸蛋白酶(tal-ens),7和8个转录激活蛋白,8个,8个,8次,工程为与特定c c and c cy c c c c c c c demomic cynomic cytemic cytemic contimic contimic cypeci c necy。9,10麦尿素,例如laglidadg归核核酸内切酶,特定识别14至40个碱基对的双链DNA序列,并启用DNA序列的修改和缺失。8个ZFN要求将多个锌nger基序连接起来,每个基序都针对一个核苷酸三重态。10 Talens需要一个DNA结合结构域,其中每个氨基酸与四种类型的核苷酸之一的特异性结合。10这些系统需要针对不同目标位点的工程不同的融合蛋白,因此并不广泛适用。CRISPR - CAS技术克服了这个问题。可以通过使用设计用于识别基因序列的cRRNA来实现不同的基因序列。CRRNA介导的CRISPR指导的可编程特征尤其有利。因此,CRISPR - CAS
我们为在强烈的对数符合数据分布的假设下提供了基于扩散的一代模型的收敛行为,而我们用于得分估计的近似函数类别是由Lipschitz的连续函数制成的,避免了分数功能上的任何Lipschitzness假设。我们通过一个激励的例子来证明,从具有未知平均值的高斯分布中取样,我们的方法的强大性。在这种情况下,为关联的优化问题提供明确的估计值,即得分近似,而这些分数与corrempond的抽样估计值结合在一起。因此,我们从关键量的关键量(例如融合的尺寸和收敛速率)中获得了数据分布之间的wasserstein-2距离(均值不明的高斯)和我们的采样算法之间的最佳知名度上限估计。除了激励示例之外,为了允许使用各种随机优化器,我们使用L 2合理的分数估计假设呈现结果,这是在随机优化器和我们的新型辅助过程中仅使用仅使用已知信息的新型辅助过程的期望。这种方法对于我们的采样算法产生了最著名的收敛速率。
对抗训练(AT)是提高深度神经网络鲁棒性的最常用机制。最近,一种针对中间层的新型对抗攻击利用了对抗训练网络的额外脆弱性,输出错误的预测。这一结果说明对抗训练中对抗扰动的搜索空间不足。为了阐明中间层攻击有效的原因,我们将前向传播解释为聚类效应,表征神经网络对于与训练集具有相同标签的样本的中间层表示相似,并通过相应的信息瓶颈理论从理论上证明了聚类效应的存在。随后我们观察到中间层攻击违反了 AT 训练模型的聚类效应。受这些重要观察的启发,我们提出了一种正则化方法来扩展训练过程中的扰动搜索空间,称为充分对抗训练(SAT)。我们通过严格的数学证明给出了经过验证的神经网络鲁棒性界限。实验评估表明,SAT 在防御针对输出层和中间层的对抗性攻击方面优于其他最先进的 AT 机制。我们的代码和附录可以在 https://github.com/clustering-effect/SAT 找到。
世界卫生组织 (WHO) 宣布的 2019 年冠状病毒 (COVID-19) 大流行需要长期解决方案才能克服 (Cai 等人,2021 年;WHO,2020a)。截至 2022 年 10 月,全球已向 WHO 报告了 621,797,133 例确诊的 COVID-19 病例,包括 6,545,561 例死亡病例。截至 2022 年 10 月,每 100 人接种的疫苗剂量总数为 164 剂 (WHO,2020b)。安全的疫苗有望带来广泛的临床和社会经济效益 (Rowland and Johnson,2020)。越来越多的证据表明,COVID-19 疫苗可以减轻症状的严重程度并防止传播。但是,疫苗仍必须满足预防感染和疾病的最低要求 (Dye and Mills,2021 年)。在所有方法中,基于信使 RNA (mRNA) 的疫苗已成为快速应对这一挑战的快速多功能平台 (Zhang 等人,2020a)。对已批准的 COVID-19 mRNA 疫苗 (PfizerBioNTech 和 Moderna) 的评估已在不同人群中持续显示出较高的疫苗有效性 (Tenforde 等人,2021;Thompson 等人,2021)。监测 COVID-19 疫苗接种后的安全性可以帮助政策制定者决定是否可能需要接种加强疫苗 (Feng 等人,2018;Ferdinands 等人,2021)。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
从时间分辨的医学图像中精确重建右心几何形状和运动可增强基于图像可视化的诊断工具以及通过计算方法进行的心脏血液动力学分析。由于右心形态和运动的特殊性,常用的分割和/或重建技术仅采用短轴电影 MRI,在右心相关区域(如心室底部和流出道)缺乏准确性。此外,重建过程非常耗时,并且在生成计算域的情况下需要大量的人工干预。本文提出了一种从时间分辨 MRI 中精确高效地重建右心几何形状和运动的新方法。具体而言,所提出的方法利用表面变形来合并来自多系列电影 MRI(如短/长轴和 2/3/4 腔采集)的信息并重建重要的心脏特征。它还通过利用合适的图像配准技术自动提供完整的心脏收缩和放松运动。该方法既适用于健康病例,也适用于病理(法洛四联症)病例,并且比标准程序产生更准确的结果。所提出的方法还用于为计算流体动力学提供重要输入。相应的数值结果证明了我们的方法在计算临床相关血液动力学量方面的可靠性。© 2023 Elsevier BV 保留所有权利。
互不偏向的基对应于量子信息论中非常有用的测量对。在最小的复合维度 6 中,已知存在 3 到 7 个互不偏向的基,而几十年前的猜想,即 Zauner 猜想,指出互不偏向的基最多只有 3 个。这里我们通过对每对整数 n,d ≥ 2 构建贝尔不等式来数值解决 Zauner 猜想,当且仅当 n 个 MUB 存在于该维度中时,这些整数在维度 d 中可以被最大程度地违反。因此,我们将 Zauner 猜想转化为优化问题,并通过三种数值方法解决该问题:跷跷板优化、非线性半定规划和蒙特卡洛技术。这三种方法都正确地识别出了低维空间中的已知情况,并且都表明在六维空间中不存在四个相互无偏的基,并且都找到了相同的基,这些基在数值上优化了相应的贝尔不等式。此外,这些数值优化器似乎与六维空间中的“四个最远的基”相吻合,这是通过数值优化距离测量发现的 [P. Raynal, X. Lü, B.-G. Englert, Phys. Rev. A , 83 062303 (2011)]。最后,蒙特卡罗结果表明十维空间中最多存在三个 MUB。
人工智能 (AI) 具有对放射肿瘤学领域产生积极影响的巨大潜力。然而,开发放射肿瘤学 AI 模型需要大量精选数据集(通常涉及图像数据和相应的注释)。重要的是,最近为科学数据管理建立的可查找、可访问、可互操作、可重用 (FAIR) 原则使得越来越多的放射肿瘤学相关数据集能够通过数据存储库传播,从而成为 AI 模型构建的丰富数据来源。本文回顾了放射肿瘤学数据传播的现状和未来,特别强调已发布的成像数据集、AI 数据挑战和相关基础设施。此外,我们提供了 FAIR 数据传播协议的历史背景、当前放射肿瘤学数据分布中的困难以及有关数据传播以最终用于 AI 模型的建议。通过 FAIR 原则和标准化的数据传播方法,放射肿瘤学 AI 研究不会有任何损失,反而会有所收获。Semin Radiat Oncol 32:400 − 414 2022 作者。由 Elsevier Inc. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)
高能电子和 X 射线光子与诸如卤化物钙钛矿之类的光束敏感半导体的相互作用对于表征和理解这些光电材料至关重要。使用可以在纳米尺度上研究物理特性的纳米探针衍射技术,研究了电子和 X 射线辐射与最先进的 (FA 0.79 MA 0.16 Cs 0.05 )Pb(I 0.83 Br 0.17 ) 3 混合卤化物钙钛矿薄膜 (FA,甲脒;MA,甲铵) 的相互作用,使用扫描电子衍射和同步加速器纳米 X 射线衍射技术跟踪局部晶体结构随通量的变化。从中识别出钙钛矿晶粒,在 200 e − Å − 2 的通量后,与 PbBr 2 相对应的额外反射作为晶体降解相出现。这些变化伴随着相邻大角度晶粒边界上小 PbI 2 晶体的形成、针孔的形成以及从四方到立方的相变。纳米 X 射线衍射中的光子辐照也会引起类似的降解途径,表明存在共同的潜在机制。这种方法探索了这些材料的辐射极限,并提供了纳米级降解途径的描述。解决大角度晶粒边界问题对于进一步提高卤化物多晶薄膜的稳定性至关重要,尤其是对于易受高能辐射影响的应用,例如空间光伏。
基因组工程项目通常利用细菌人工染色体 (BAC) 来携带低拷贝数的多千碱基 DNA 片段。然而,全基因组工程的所有阶段都有可能对合成基因组施加突变,从而降低或消除最终菌株的适应性。在这里,我们描述了对多重自动基因组工程 (MAGE) 协议的改进,以提高重组频率和多路复用性。该协议用于重新编码大肠杆菌菌株,以在基因组范围内用同义替代词替换七个密码子。重新编码菌株的 BAC 中包含的 10 个 44 402–47 179 bp 从头合成 DNA 片段无法补充使用单个抗生素抗性标记所导致的相应 33–61 个野生型基因的缺失。下一代测序 (NGS) 用于识别每个片段中必需基因的 1-7 个非重编码突变,而 MAGE 反过来证明是一种有用的策略,可以在 BAC 中包含的重编码片段上修复这些突变,因为在修复过程中突变基因的重编码和野生型拷贝都必须存在。最后,使用两个基于网络的工具,使用蛋白质结构和功能调用来预测一组非重编码错义突变对菌株适应性的影响。